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Algebra I: Chapter 7
A Brief Introduction to Theory of Rings

7.1 Rings, Homomorphisms and Ideals.
A ring is a setR equipped with two operations (+) and (·) having the following properties

(i) (R,+) is an abelian group whose additive identity is the zero element
0 = 0

R
in the ring.

(ii) The multiplication operation (·) is associative: x·(y ·z) = (x·y)·z
(iii) Distributive laws hold from both sides: a · (b+ c) = a · b+ a · c and

(a+ b) · c = a · c+ b · c
We do not assume multiplication is commutative, though it will be in the majority of
our examples; if ab = ba for all a, b then R is a commutative ring, as in Chapter 2. A
ring has an identity element if there is some element 1 ∈ R such that

1·a = a·1 = a for all a ∈ R

(a “two-sided” identity element); the identity is unique if it exists, and rings with iden-
tities are called unital rings. Two rings are isomorphic, indicated by writing R ∼= R′,
if there is a bijection φ : (R,+, · )→ (R′,⊕,⊙) that intertwines the ring operations

φ(a+ b) = φ(a)⊕ φ(b) and φ(a · b) = φ(a)⊙ φ(b)

It follows easily that if R ∼= R′ and R has an identity so does R′, with 1
R′ = φ(1

R
).

7.1.1 Definition. In a commutative ring R with identity 1
R

the multiplicative units
are the elements with multiplicative inverses, so that x−1x = 1

R
. These elements form an

abelian group (UR, · ) that always includes ±1
R
. It is possible that these are the only units

in R, as in Z2 and Z4. An element x ∈ R is a prime if x 6= 0 and x cannot be factored
x = ab as the product of two non-units (a nontrivial factorization). The identity element
1

R
cannot be a prime, nor can any multiplicative unit because a·b = 1

R
⇒ b = a−1 and

a, b are both units.
Two special types of rings will be of recurring interest. A commutative ring is:

• An integral domain if it has an identity and no “zero divisors,” which
means that products of nonzero elements are always nonzero. Thus b
must be zero if ab = 0 and a 6= 0.

• An integral domain R is a field if every nonzero element has a multi-
plicative inverse x−1 so that x·x−1 = 1

R
.

Division can be performed in any field if we let a/b = a·b−1 for a, b ∈ R with b 6= 0. The
ring of integers (Z,+, · ) is a commutative ring with identity in which there is no division
process, but in Z and other integral domains we may nevertheless perform “cancellation,”

(1) If a 6= 0 and ab = ac then b = c.

in place of division. This works because

ab = ac ⇔ a·(b− c) = 0 ⇒ b− c = 0 ⇔ b = c

if a 6= 0.
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Examples of number fields include C,R,Q and the spaces (Zp,+, · ) for prime p > 1.
The rings (Zn,+, ) of (mod n) congruence classes have identities 1

R
= [1] but are not

integral domains unless n is a prime. For instance [2]·[2] = [4] = [0] in Z4, and in general
any non-prime n > 1 can be factored as n = k ·ℓ with 1 < k, ℓ < n; then Zn has zero
divisors because [k], [ℓ] 6= [0] but [k]·[ℓ] = [n] = [0] in Zn.

More Examples.

• Zero Ring. The trivial ring, or “zero ring” is an amusing counterexample to many
theorems unless it is explicitly excluded. It consists of a single element “0” such
that

0 + 0 = 0 0 · 0 = 0

This ring has an identity, namely 1
R

= 0
R

and is the only ring with identity such
that 1

R
= 0

R
.

• Another amusing example involves a nontrivial set R all of whose operations are
trivial: R = {0, a} with

0 + 0 = 0 a+ a = 0 a·a = 0 0·0 = 0

and 0 + a = a + 0 = a (as required by the commutative ring axioms, Chapter 2).
This is commutative but has no identity element because a·x = 0 6= a for all x. It
is not isomorphic to the two-element ring (Z2,+, · ).

• Boolean Algebra. Let S be a nonempty set and R = (all subsets A ⊆ S),
equipped with the algebraic operations

A+B = (A ∼ B) ∪ (B ∼ A) (symmetric difference set)

A·B = A ∩B

Then (R,+, · ) is a commutative unital ring with identity 1
R

= S, zero element
0

R
= ∅, and −A = S ∼ A. Note that every element is an idempotent, with A2 = A.

There are many zero divisors since A·B = 0
R
⇔ A ∩B = ∅.

• Matrix Rings. The set of all n× n matrices M(n,R) with entries in an integral
domain R is a noncommutative ring with identity In×n. There are many zero
divisors, for instance

A2 = 0 for A =

»

0 1
0 0

–

(

but B2 = B 6= 0 for B =

»

1 0
0 0

–

)

Units in this ring, elements with two-sided multiplicative inverses, form a noncom-
mutative group, the “general linear group”

GL = {A ∈M(n,R) : BA = AB = I for some B}

under matrix multiply. If R = F (a field) the units in M(n,F) are the invertible
matrices GL(n,F) = {A : det(A) 6= 0}. The situation is more complicated if R is
just an integral domain. For instance the units in M(n,Z) are the integral matrices
with determinant ±1; integral matrices with nonzero determinant have inverses in
M(n,R), but by Cramer’s Rule for computing matrix inverses the entries in A−1

won’t be integers unless det = ±1.
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• Polynomial Rings F[x]. If F is a field the space F[x] of polynomials in one
indeterminate consists of finite sums

f(x) =
∑

k≥0

ckx
k (ck ∈ F),

This is a commutative and unital ring under the usual (+) and (·) operations
on polynomials. The zero element is the polynomial with all ck = 0 and the
multiplicative identity 1- has c0 = 1, ck = 0 for k > 0. Every nonzero polynomial
has a degree

deg f = m if xm is the highest power with nonzero coefficient

Constant polynomials c1- have degree zero, except for the zero polynomial (c = 0)
whose degree canot be defined. The following important property

(2) deg(f ·h) = deg(f) + deg(h) for f, h 6= 0 in F[x]

follows because the leading nonzero term of f ·h is ambnx
m+n if f =

∑m

k=0 akx
k

and h =
∑n

k=0 bkx
k with am, bn 6= 0. Obviously F[x] has no zero divisors and is

an integral domain. Its group of units is the set of nonzero constant polynomials
UF[x] = {c1- : c 6= 0 in F}. The primes in this ring are the irreducible polyno-
mials, those that cannot be written as a product f = h1 ·h2 whose factors have
deg(hi) < deg(f). Nonzero constant polynomials are units and cannot be prime.

7.1.2 Exercise. If F is a field and f ∈ F[x], explain why f(x) cannot have roots in F

(values where f(λ) = 0) if f is a prime in F[x]. Give an example in R[x] showing that
the converse is false: produce an f ∈ R[x] that has no real roots but is not prime.
Hint: If f(λ) = 0 you can long divide by (x− λ) without remainder. �

• Polynomial Rings R[x]. These properties remain true if we allow polynomials
to have coefficients chosen from an arbitrary integral domain R, not necessarily a
field, defining f + h in the obvious way and taking

(
m

∑

k=0

akx
k) · (

n
∑

k=0

bkx
k) =

m+n
∑

k=0

(
∑

i+j=k

aibj)xk

for the product. The identity element in R[x] is the constant polynomial 1- whose
only nonzero coefficient is a0 = 1

R
(identity element in the coefficient ring R). The

degree formula (2) remains valid because am, bn 6= 0 ⇒ ambn 6= 0 in the leading
term of f ·h, hence R[x] is also an integral domain.

One example in which R is not a field is the ring Z[x] of polynomials with integer
coefficients. If f, h have leading nonzero terms amx

m and bnx
n the leading term

in their product is ambn · xm+n, with ambn 6= 0, so fh 6= 0. Thus Z[x] is also an
integral domain.

7.1.3 Exercise. If R is an integral domain verify that the group of units in R[x] is the
set of constant polynomials UR[x] = {c·1- : c a unit in R} = UR ·1-. �

• Polynomial Rings R[x] = R[x1, . . . , xn]. If R is a field or integral domain the
ring R[x] of polynomials in several indeterminates x1, . . . , xn consists of finite sums
with coefficients in R

f(x) =
∑

k1≥0

· · ·
∑

kn≥0

c(k1,...,kn) x
k1
1 . . . xkn

n
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Efficient discussion of these rings requires use of “multi-index notation.” A
multi-index is an ordered n-tuple of nonnegative integers α = (α1, . . . , αn) in Zn+
for which we define a degree |α| = α1 + . . .+ αn and sums

α+ β = (α1 + β1, . . . , αn + βn)

Each multi-index corresponds to a “monomial” in R[x1, . . . , xn]

xα = xα1

1 · . . . · xαn

n (with xαk

k = 1 if αk = 0)

We assign a degree deg(xα) = |α| to each monomial. By convention x(0,...,0) = 1-,
the constant polynomial whose only nonzero coefficient is c(0,...,0) = 1

R
. Every

polynomial in R[x] is a finite linear combination f =
∑

α∈Zn
+

cαx
α with coefficients

cα ∈ R.
Sums f + h are defined by adding coefficients of like monomials; products are

formed by multiplying monomials appearing in f and h, assuming that the inde-
terminates commute xixj = xjxi so that

cαx
α · dβxβ = cαdβ · xα+β (which has degree |α+ β| = |α|+ |β|),

and then adding all terms involving the same monomial. In multi-index notation
the resulting product formula is

(3) (
∑

|α|≥0

cαx
α ) · (

∑

|β|≥0

dαx
β ) =

∑

|γ|≥0

(
∑

α+β=γ

cα · dβ) · xγ

This will look reasonably familiar if your write it out when there are just n = 2
variables x, y.

Every nonzero polynomial in F[x1, . . . , xn] has a well-defined degree

deg(f) = max{|α| : cα 6= 0}

with deg(f) = 0 ⇔ f is a nonzero constant polynomial; no meaningful degree can
be assigned to the zero polynomial 0 ·1-. Because a nonzero f might have several
terms of highest degree cαx

α with |α| = m, the proof of the degree formula for
polynomials of several variables is much more challenging than that for polynomials
in one variable. The desired result is

(4)
Theorem (Degree Formula). If R is an integral domain and
f, h ∈ R[x] are nonzero then f ·h is nonzero and deg(f ·h) =
deg(f) + deg(h).

For n ≥ 2 this is a tricky result involving “lexicographic ordering” of the monomials
xα; we won’t go into the proof here. Once established it implies that R[x] is an
integral domain whose units are the particular constant polynomials

UR[x1,...,xn] = UR ·1-

When n ≥ 2 the set of primes in R[x1, . . . , xn] is not so easy to identify even if the
coefficient ring is a field.

7.1.4 Exercise. Which of the following polynomials (if any)

(a) x2 − y2 (c) x2 + xy + y2

(b) x2 + y2 (d) x2 − y2 + 1
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are primes in the polynomial ring R[x, y]? In C[x, y]? �

Here is an instructive example of a polynomial ring with exotic coefficients.

7.1.5 Example. If F is a field and we take R = F[x] as the coefficients in the polynomial
ring R[y], every element in F[x, y] can be uniquely be rewritten as an element of R[y]:

f(x, y) =
∑

i,j≥0

cijx
iyj =

∑

j≥0

(
∑

i≥0

cijx
i ) · yj =

∑

j≥0

pj(x)y
j

with pj ∈ R[x]. Letting Φ(f) ∈ R[y] be the right hand sum, it is easy to verify that
Φ : F[x, y]→ R[y] is a bijection and an isomorphism of rings, so that

F[x, y] ∼= (F[x])[y] �

7.1.6 Example (Adjoining Roots to Q). The set of Q-linear combinations

E = Q +
√

2 ·Q = {a+
√

2b ∈ R : a, b ∈ Q} = Q-span{1,
√

2}

is a commutative unital ring if we define

(a+
√

2b) + (a′ +
√

2b′) = (a+ a′) +
√

2(b+ b′)

(a+
√

2b) · (a′ +
√

2b′) = (aa′ + 2bb′) +
√

2(ab′ + a′b)

with 1
R

= 1+
√

2 ·0 and 0
R

= 0+
√

2 ·0. It contains a copy of the rationals Q ∼= Q+
√

2 ·0
and hence may be regarded as an “extension” of Q to a larger system E. This extension
is actually a field, for if z = a+

√
2b 6= 0 +

√
2·0, then

1

z
=

1

a+
√

2b
· a−

√
2b

a−
√

2b
= ( a

a2 − 2b2
) +
√

2( −b
a2 − 2b2

)

is its multiplicative inverse within E. (The denominator a2−2b2 is nonzero because there
is no

√
2 in Q.)

Since Q ⊆ E we may regard Q[x] as the subset of polynomials in E[x] that happen
to have coefficients in Q. The polynomial f = x2 − 2 ∈ Q[x] has no roots in Q and is
irreducible, so it is a prime in the ring Q[x]. But it does have roots ±

√
2 in the larger

field E, and splits into linear factors x2 − 2 = (x −
√

2)·(x +
√

2) in E[x]. Essentially, E

was obtained by “adjoining a root of x2 − 2” to the original field Q. In a natural sense
E is the smallest field containing

√
2 and Q. �

7.1.7 Example (The Gaussian Integers Z[i]). The “integral points” in the system
of complex numbers

(5) Z[i] = {m+ in ∈ C : m,n ∈ Z}

form a commutative unital ring with 1
R

= 1 + i0 because this system is closed under the
usual operations (+) and (·) in C. It is an integral domain but not a field. In fact there
are just four units in this system,

UR = {1,−1, i,−i}

because if z ·w = 1 in C and z, w are both integral, the identity 1 = |zw| = |z|·|w| can
only hold when both z and w have absolute value 1, which means z = ±1 or ±i, and
likewise for w.

We will soon see that the map d : Z[i]→ Z+

d(m+ in) = m2 + n2 = |m+ in|2
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shares many properties with the degree map on polynomial rings F[x], except that

d(zw) = d(z)·d(w) instead of d(f ·h) = d(f) + d(h)

The ring Z[i] and its degree map are important in number theory and in later discussion
of the “prime factorization problem” for integral domains. �

Subrings. Consider a ring R that is not necessarily commutative. A subring is a subset
R′ such that

0
R
∈ R′ R′ +R′ ⊆ R′ R′ · R′ ⊆ R′ −R′ = R′

Then (R′,+, · ) is a ring in its own right with 0
R′ = 0

R
, in which the additive inverse

−a of an element in R′ agrees with the additive inverse in R. As examples we have (i)
R′ = 2Z or R′ = nZ in R = Z; (ii) the set R′ = x·R[x] of polynomials in R[x] without
constant term; (iii) the set R′ of strictly upper triangular matrices in M(n,F), those with
zeros on and below the diagonal; (iv) D = all diagonal matrices in M(n,F); and (v) D0 =
the diagonal matrices with lower right entry ann = 0.

Identity elements in subrings require careful handling. R′ need not have an identity
even if R does [as in (ii), (iii), (v)], and R′ can have its own identity even if R does not.
Moreover, even if there are identities 1

R
∈ R and 1

R′ ∈ R′, these might not agree. [The
identity in D is the identity matrix I = In×n while the identity in the subring D0 is
E = diag(1, . . . , 1, 0), with E2 = E 6= I in the larger ring D.]

Now shift attention to commutative rings to keep things simple. A nonempty subset of
a commutative ring R generates a subring R′ = 〈S〉 just as a subset of a group generates
a subgroup H = 〈S〉

(6)
Generated Subring: The subring 〈S〉 generated by a nonempty subset of
a ring R is the smallest subring R′ ⊆ R that contains S.

This “top down” definition makes sense because the intersection of an arbitrary family of
subrings is again a subring, so 〈S〉 is the intersection of all subrings containing S (there is
at least one, namely R itself). But, as with groups, there is a more informative “bottom
up” construction as sums of “words” in the generators:

(7) 〈S〉 =
{

r
∑

i=1

s1 · . . . · sr : r <∞, si ∈ S ∪ (−S)

}

7.1.8 Exercise. Verify that the set of elements specified in (7) actually is the minimal
subring containing the generators S. Why must we allow si ∈ −S in forming the “words”
whose finite sums make up 〈S〉? Construct a simple example illustrating what goes wrong
if you only allow si ∈ S. �

7.1.9 Exercise. If R = Z and S = {15, 18} what is 〈S〉?

(a) If R = F[x] what is the subring generated by {x2, x3}? By {x4, x6}?
(b) Show that the subring generated by f = 1 + x2 consists of the polynomials in

(1 + x2) · F[x2], where F[x2] is the subring of even polynomials – those in which
only even powers x2k apppear.

Note: In (b) you should verify that (1 + x2)F[x2] actually is a subring in F[x].

Now assume there are only finitely many generators, so S = {s1, . . . , sn}. If R is
assumed commutative every word s1 . . . sr in (7) may be rewritten as a “reduced word”
±sk11 . . . skn

n (with ki ≥ 0 and k1 + . . .+ kn = r) by gathering together all occurrences of
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the same generator si. The sum in (7) can be further simplified by bringing together all
reduced words that differ only by a ± sign; using multi-index notation we get

(8) 〈S〉 =
∑

α∈Zn
+

mα ·sα1

1 . . . sαn

n =
∑

α∈Zn
+

mαs
α (mα ∈ Z)

Thus 〈S〉 consists of finite sums of monomials sα in the (commuting) generators s1, . . . , sn
with coefficients mα ∈ Z. Note the resemblance between (8) and elements of the poly-
nomial ring Z[x1, . . . , xn], which are described in multi-index notation as the finite sums

f =
∑

α∈Zn
+

mαx
α =

∑

α∈Zn
+

mα ·xα1

1 · . . . · xαn

n (mα ∈ Z)

This similarity is no accident. The generated ring 〈S〉 is obtained by substituting x1 =
s1, . . . , xn = sn in arbitrary polynomials f ∈ Z[x1, . . . , xn]. In this description there is
no need to worry about the role of −S because the integer coefficients mα in (8) can be
positive or negative.

If R is a commutative ring with identity and S a nonempty subset, the subring it
generates R′ = 〈S〉 might not contain the identity element 1

R
. The subring R′′ = 〈1

R
, S〉

contains the identity and is just large enough to pick up 1
R

and all the elements in S.

7.1.10 Exercise. If R is a commutative ring with identity 1
R

show that

(a) The subring 〈1
R
〉 generated by 1

R
is the set of “integer multiples” Z·1

R
.

(b) If S is a nonempty subset of R show that

〈S, 1
R
〉 = Z·1

R
+ 〈S〉 = {a+ b : a ∈ Z·1

R
, b ∈ 〈S〉} �

Here the action Z×R→ R of the natural integers on elements of a ring must be defined
with some care. For x ∈ R and n ∈ Z we define

(9) n·x =

{

x+ . . .+ x (n times) if n > 0 in Z

(−x) + . . .+ (−x) (|n| times) if n < 0 in Z

taking 0·x = 0
R

when n = 0.

Beware: The outcome is not always what you might expect. For instance if R = Zn
we get n·1

R
= [1] + . . .+ [1] (n terms) = [0] in Zn, so Z·1

R
= Z·[1] = Zn is finite! The

subring Z·1
R

can be finite even if the over-ring R is infinite, as in the next example.

7.1.11 Example. If p is a prime the polynomial ring Zp[x] is an infinite dimensional
vector space with basis vectors 1-, x, x2, . . . and coefficients in the finite field Zp. The set
of constant polynomials c·1- (c ∈ F = Zp) is finite and equal to

Zp ·1- = {[k]·1- : [k] ∈ Zp}.

By the distributive laws this is the same as the set Z·1- of finite sums

1-, 1- + 1- = [2]·1-, 1- + 1- + 1- = [3]·1-, . . .

If R = Zp[x] the subring 〈1-〉 = Z·1- generated by the identity element reduces to Zp ·1-.
�

Quotient Rings and Ideals. Again we allow noncommutative rings for a while, before
focusing on the commutative rings that are our main interest. A homomorphism
φ : R→ R′ between rings is a map such that

φ(a+ b) = φ(a) ⊕ φ(b) and φ(a · b) = φ(a) ⊙ φ(b) for all a, b ∈ R
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Here the operations in R′ are being used on the right. An isomorphism is a bijective ho-
momorphism between rings; its inverse φ−1 : R′ → R is automatically a homomorphism
too. We write R ∼= R′ if the rings are isomorphic, and this RST equivalence relation
partitions the family of all rings into disjoint “isomorphism classes.”

Things go differently for rings than they do for groups. Even if R,R′ have identities
there is no guarantee that φ(1

R
) = 1

R′ unless this property is specified separately. Ho-
momorphisms between unital rings are called unital homomorphisms if φ(1

R
) = 1

R′ .

7.1.12 Exercise. If φ : R→ R′ is a homomorphism of rings prove that

(a) φ(0
R
) = 0

R′ (b) φ(−a) = −φ(a) in R′

7.1.13 Exercise. If φ : R → R′ is a bijective homomorphism between rings, prove that
the inverse map φ−1 : R′ → R is automatically a homomorphism of rings. �

7.1.14 Exercise. Invent a homomorphism from M(n,F) → M(n + 1,F) such that
φ(In) 6= In+1. �

7.1.15 Exercise. If φ : R→ R′ is a surjective homomorphism and R has a multiplicative
identy 1

R
, explain why R′ also has an identity, and φ is a unital homomorphism. �

Note that a homomorphism φ : R → R′ is one-to-one if and only if its ker(φ) is trivial
because

φ(a) = φ(b) ⇔ φ(b− a) = 0
R′ ⇔ b− a ∈ K(φ) ,

so b = a if ker(φ) = {0
R
}.

The zero homomorphism φ : R → R′ kills everything: φ(a) = 0
R′ for all a. This

example also shows that range(φ) can be the trivial ring, and that φ(1
R
) need not be

equal to 1
R′ . The kernel K(φ) = {x ∈ R : φ(x) = 0

R′} of a homomorphism φ : R→ R′

is a subring of R with the special property

a·K(φ) ⊆ K(φ) and K(φ)·a ⊆ K(φ) for all a ∈ R,

which follows because φ(x) = 0 ⇒ φ(ax) = φ(a)φ(x) = 0
R′ , and similarly if we multiply

by a on the right. The range of φ, the image of R in R′, is a subring of R′ without any
special properties.

As with groups, it is useful to abstract the properties of kernels of homomorphisms
that distinguish them from mere subrings. But in rings there are complications since
rings have two operations (+) and (·), and R need not be commutative.

7.1.16 Definition. Let R be a nontrivial ring. A (left/right/two-sided) ideal is a subset
I ⊆ R such that

(i) I is a subring (possibly trivial, or all of R).

(ii) For all a ∈ R we have, respectively, aI ⊆ I; or Ia ⊆ I; or aI ⊆ I and Ia ⊆ I.
An ideal is proper if I 6= (0) and I 6= R. Subsets of the form a + I = {a + x : x ∈ I}
are the additive cosets of the ideal. The quotient space R/I is the set of additive
cosets x+ I, x ∈ R.

Of course if R is commutative there is no distinction between left-, right-, or two-sided
ideals, and in that case we simply speak of “ideals.”

7.1.17 Exercise. If I is a two-sided ideal in a ring R and a ∈ R, show that

(a) a+ I = I ⇔ a ∈ I
(b) I + I = {a+ b : a, b ∈ I} is equal to I.

(c) a+ I = b + I ⇔ b− a ∈ I.
(d) If a, b ∈ R either a+ I = b + I or these two cosets are disjoint. �
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Figure 7.1. A homomorphism φ : R → R′ sends each coset x+ I (I = kerφ), to a single
point in the target space R′, and distinct cosets have distinct images. The range of φ need
not be all of R′, as shown here.

Thus the additive cosets of a two-sided ideal partition R into disjoint subsets. The
quotient space R/I consists of the distinct additive cosets of I.

The preceding remarks show that kernels K(φ) of homomorphisms φ : R → R′

between rings are two-sided ideals. We will soon see that all two sided ideals arise this
way. The action of a typical homomorphism φ : R → R′ has the behavior shown in
Figure 7.1.

7.1.18 Lemma. If φ : R→ R′ is a homomorphism between rings and I = kerφ, then

(i) φ is constant on cosets: each coset a+ I “collapses” to a single point in R′.

(ii) φ maps distinct cosets a+ I 6= b + I to different points in R′.

(iii) The map φ is one-to-one ⇔ the kernel I = kerφ = {0
R
}.

Proof: In (i) we have φ(a+ I) = φ(a) + φ(I) = φ(a); furthermore

φ(a) = φ(b) ⇔ φ(a− b) = 0
R
⇔ a− b ∈ I

⇔ a ∈ b+ I ⇔ a+ I = b+ I (by 7.1.17(b))

proving (ii). Obviously (iii) follows from (i) + (ii). Remember: a+ I 6= b+ I ⇔ they are
disjoint. �

The Quotient Ring R/I. If N is a normal subgroup in a group G the space G/N of left
cosets xN inherits a natural group structure, with (xN) · (yN) = xyN . For a two-sided
ideal I in a ring R the operations (+) and (·) in R pass down to operations that make
the quotient space R/I a ring in its own right.

7.1.19 Definition. Let R be a nontrivial ring, I a two-sided ideal, and let π : R→ R/I
be the quotient map sending a ∈ R to π(a) = a+ I ∈ R/I. Then the operations

(10) (a+ I)⊕ (b + I) = (a+ b) + I (a+ I)⊙ (b+ I) = ab+ I

are well-defined and make R/I into a ring. The quotient map becomes a surjective ring
homomorphism; if R has an identity element then φ(1

R
) = 1

R
+ I is an identity element

for R/I.

Proof: All choices of coset representatives a, b yield the same outcome in (10). In fact
a′ + I = a+ I ⇒ a′ = a+ k for some k ∈ I and similarly b′ = b + ℓ, with ℓ ∈ I, so

(a′ + b′) + I = (a+ b) + ((k + ℓ) + I) = (a+ b) + I

(a′b′) + I = ab+ ((aℓ+ kb+ kℓ) + I) = ab+ I

9



By definition π is surjective and the ring axioms are easily verified via calculations in-
volving representatives, once the operations are known to make sense. If R is unital
1 = π(1

R
) = 1

R
+I is obviously a two-sided identity for the quotient ring and π : R→ R/I

is a unital homomorphism. �

This also shows that every two-sided ideal I in a ring R is the kernel of some ring homo-
morphism, namely the quotient map π : R→ R/I.

7.1.20 Example. (Ideals in Z). If m > 1 in Z then I = (m) = mZ = {mk : k ∈ Z} is
a (two-sided) ideal in Z. The quotient ring R/I = Z/(m) is the familiar space of (mod m)
congruence classes in Z, and the operations in R/I coincide with the operations defined
earlier on congruence classes in Zm. Thus R/I and Zm are isomorphic rings under the
bijection f(k + (m)) = [k]

m
= k +mZ

Excluding the ideals I = (0) and I = Z, all proper ideals have the form I = mZ

for some m > 1. In fact, I ∩ N must contain a smallest element m and if m = 1 the
ideal coincides with Z. When m > 1 the ideal contains mZ, but if I contained any other
element n0 /∈ mZ we could adjust this by adding a multiple of m to get an element in I
such that 0 < n0 < m. That would contradict minimality of m = min(I ∩ N). �

7.1.21 Example (A Substitution Principle). Let R 6= (0) be a commutative unital
ring without zero divsiors (an integral domain) and consider a polynomial f(x) ∈ R[x]
with coefficients in R. If we fix some a ∈ R we can substitute x = a in f(x) to get an
evaluation map ǫa : R[x]→ R

ǫa(
∑

i=0

cix
i) = (

∑

i=0

cia
i) ∈ R

It is trivial to verify that ǫa is a homomorphism, surjective since ǫa(c1-) = c for c ∈ R;
it is unital because ǫa(1-) = 1-

R
. Computing the kernel ker(ǫa) = {f ∈ R[x] : f(a) = 0

R
}

explicitly can be a challenge if R is a peculiar ring, but is easy when R = F is a field. �

7.1.22 Lemma. If F is a field and f ∈ F[x] a nonzero polynomial such that f(a) = 0
for some a ∈ F, then (x− a) divides f without remainder:

There is some h ∈ F[x] such that f = (x − a)·h(x).

Thus ker(ǫa) = (x − a)F[x], the ideal in F[x] generated by (x− a).
Proof: Since f is nonzero in F[x] but f(a) = 0, f cannot be a constant polynomial, so
deg(f) ≥ 1 and

f = cmx
m + . . .+ c1x+ c0 with cm 6= 0,m ≥ 1

If m = 1 then f = c1x+ c0 and since f(a) = 0 we have c0 = −c1a, so f = c1(x− a) and
(x−a) divides f(x). Arguing inductively, assume (x−a) divides h(x) for all h(x) of degree
≤ m such that h(a) = 0. If deg(f) = m+1 and f(a) = 0 with f(x) = cm+1x

m+1+. . .+c0,
let g(x) = cm+1x

m(x − a) = cm+1x
m+1 − acm+1x

m, chosen to have the same leading
term as f(x). Subtract to get r(x) = f(x)− g(x), which has lower degree. Then

f(x) = g(x) + r(x) = h(x)(x − a) + r(x) where h(x) = cm+1x
m

Here the remainder is either zero (and (x−a) divides f(x)), or is nonzero with degree
≤ m. In this case r(a) = f(a)− h(a)(a − a) = 0, and by the induction hypothesis there
is an h′(x) ∈ F[x] such that r(x) = h′(x)(x − a). Then

f(x) = [h(x)− h′(x)](x− a)

is also divisible by (x− a) as required. �
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7.1.23 Corollary. If F is a field any nonconstant polynomial f ∈ F[x] has at most d
distinct roots, where d = deg(f).

For every root a we can split off a factor (x− a), lowering deg f by one. Repeating this
process we can write f(x) = (x − a)mh(x) where a is not a root of h(x); the exponent
m is the algebraic multiplicity of a. Extending 7.1.23, if each root in F of f(x) is
counted according to its multiplicity mi = m(ai) we see that

(11) f(x) = h(x) ·
r

∏

i=1

(x− ai)mi where h(x) has no roots in F

Even if each root is counted according to its multiplicity the number of roots cannot
exceed deg f ,

deg f ≥ m(a1) + . . .+m(ar) a1, . . . ar the distinct roots of f

Of course it is possible that f(x) has no roots in F, as when F = R and f = x2 + 1 or
F = Q and f = x2 − 2 (since there is no

√
2 in the rationals).

From here on we will focus on commutative rings R, and some of the special ideals
they contain.

7.1.24 Definition. (Principal Ideals). Let R be a nontrivial commutative ring and
a ∈ R. This element determines two ideals in R, the ideal I = 〈〈a〉〉 generated by a,
and the principal ideal I = (a) determined by a.

(12)

Principal Ideal: The subset (a) = aR = {ar : r ∈ R}
Generated Ideal: The smallest ideal I containing a,

〈〈a〉〉 = Z · a+ aR = {na+ ar : n ∈ Z, r ∈ R}

We do not assume that there is an identity in R. If not, the principal ideal (a) is
contained in, but could differ from, the ideal I = 〈〈a〉〉 generated by a, and the principal
ideal (a) might not contain the element by which it is determined! If R has an identity
1

R
then a = a·1

R
∈ aR = (a) and in this case (a) = 〈〈a〉〉. Below we will show that all

ideals in the polynomial ring F[x] are principal ideals when F is a field, a fact that is no
longer true for polynomials F[x1, . . . , xn] in more than one unknown.

7.1.25 Exercise. In the ring F[x, y] prove that the ideal I = {f(x, y) : f(0, 0) = 0} is
not a principal ideal – i.e. I 6= (h) = h(x, y) · F[x, y] for any polynomial h(x, y).
Hint: The polynomials p(x, y) = x and q(x, y) = y are in I, and the degree formula (4)

deg(f · g) = deg(f) + deg(g)

holds for any f, g 6= 0 in F[x, y]. What does this tell you about a possible generator
h(x, y)? �

7.1.26 Exercise. If a commutative ring R 6= (0) does not have an identity show that

(a) The set (a) = aR is an ideal in R.

(b) The set 〈〈a〉〉 = Za+ aR = {na+ ar : n ∈ Z, r ∈ R} is an ideal.

(c) Explain why 〈〈a〉〉 is the smallest ideal in R containing a. �

7.1.27 Example. In the unital ring F[x] the sets x·F[x] = (polynomials without constant
term) and (1+x2) ·F[x] are examples of principal ideals, generated by the elements g = x
and h = 1 + x2. Principal ideals in F[x] can arise in other ways, for example if a ∈ F

11



the kernel of the evaluation map ǫa : f → f(a) ∈ F is a principal ideal – and in fact by
7.1.22 we have

ker(ǫa) = {f : f(a) = 0} = (x− a)·F[x] = 〈〈x − a〉〉

so ker(ǫa) is precisely the principal ideal I = (x − a) consisting of polynomials divisible
by (x− a). �

Polynomials f =
∑

k≥0 ckx
k (finite formal sums of powers xk) are easily confused

with the scalar valued functions ψf : F→ F they determine, namely

ψf (a) =
∑

k=0

cka
k (for all a ∈ F)

When F = R or C, F[x] and PF are essentially the same thing, but as the next example
shows they are very different animals when F is a finite field such as Zp (p > 1 prime).

7.1.28 Example (Formal Sums vs. Polynomial Functions). Let F be a field and
PF the set of “polynomial maps” ψ : F→ F, so

ψ ∈ PF ⇔ ∃ f ∈ F[x] such that ψ(t) = ψf (t) =
∑

k=0

ckt
k for all t ∈ F

PF is a commutative unital ring of functions on F under the usual pointwise operations
(+) and (·); the identity element in PF is the constant function everywhere equal to
1F. Every polynomial f ∈ F[x] yields a polynomial map ψf : F → F under the natural
correspondence

Ψ : F[x]→ PF such that Ψ(f) = ψf (t) for all t ∈ F

The map Ψ is surjective by definition of PF, and is easily seen to be a unital homorphism
between rings.

What is often not recognized is that Ψ might not be a ring isomorphism because it
need not be one-to-one. Different polynomial expressions f =

∑

i=0 cix
i may collapse to

the same scalar-valued function ψf : F → F, or equivalently a nonzero polynomial f(x)
might yield the zero function ψf (t) ≡ 0

F
on F.

First note that ker(Ψ) = {f ∈ F[x] : f(t) ≡ 0 on F}, so Ψ is bijective if the field has
infinitely many elements. [Then f ∈ ker(Ψ) ⇒ f(t) would be zero for infinitely many
t ∈ F, which by 7.1.23 is impossible unless f is the zero polynomial.] Thus ker(Ψ) is
trivial and F[x] ∼= PF if |F| =∞.

Now consider the polynomial xp−x in the ring Zp[x] of polynomials with coefficients
in the finite field Zp (p a prime). We invoke the following well-known result from Number
Theory.

7.1.29 Theorem (Fermat’s Little Theorem). If p > 1 is a prime then tp = t for
all t ∈ Zp, so the polynomial f = xp − x ∈ Zp[x] is in the kernel of the homomorphism
Ψ : Zp[x]→ PF when F = Zp.

Proof: The equation xp − x = 0 is satisfied if we set x = 0. Since p is a prime Zp is a
field and every nonzero element is a multiplicative unit. These units form a multiplicative
group with p− 1 elements. By the Lagrange Theorem we must have up−1 = 1 for every
unit, so every u 6= 0 in Zp is a root of the polynomial xp−1 − 1-. Thus f(x) = xp − x is
zero for every element in Zp, making ψf ≡ 0. �

When F = Zp the kernel

ker(Ψ) = {f ∈ Zp[x] : f(t) ≡ 0 on Zp}

12



obviously contains the principal ideal I = (xp−x) ·Zp[x]. Later on with additional tools
it will be easy to show that ker(Ψ) is actually equal to (xp − x) · Zp[x]. Can you devise
a proof now, using brute force?

7.2. General Properties of Quotient Ring Construction.
We begin with further comments valid for arbitrary, not necessarily commutative rings.

7.2.1 Theorem (First Isomorphism Theorem). Let R be a nonzero ring and φ a
homomorphism from R to R′ with I = ker(φ) and let A = φ(R) be the image of R in R′.
If π : R→ R/I is the quotient homomorphism there is an induced isomorphism of rings
φ̃ : R/I → A given by

(13) φ̃(x+ I) = φ(x) for all x ∈ R

The map (13) is well-defined, the diagram in Figure 7.2 commutes (with φ = φ̃ ◦ π), and
φ : R/I → A is a ring isomorphism. If φ is surjective then R′ ∼= R/I.
Proof: The definition φ̃(x + I) = φ(x) makes sense: if I = ker(φ) then φ is constant

R
φ−→ A ⊆ R′

π ↓ ր̃
φ

R/I

Figure 7.2. The situation in proving the First Isomorphism
Theorem. Here φ : R → R′ is a homomorphism and A = φ(R)
its range, a subring in R′; π is the quotient map. Note that (i)
φ is constant on cosets x+ I in R, and (ii) ker(φ) = ker(π).

on each coset x+ I. It is a ring homomorphism because

φ[(x+ I)⊕ (y + I)] = φ((x + y) + I) = φ(x + y)

= φ(x) ⊕ φ(y) = φ(x + I)⊕ φ(y + I)

φ[(x+ I)⊙ (y + I)] = φ((xy) + I) = φ(xy)

= φ(x) ⊙ φ(y) = φ(x + I)⊙ φ(y + I)

The diagram commutes (with φ = φ̃ ◦ π) by definition of φ̃.
Map φ̃ is surjective because a ∈ A ⇔ a = φ(x) for some x ∈ R and then φ̃(x + I) =

φ(x) = a. The map is one-to-one ⇔ ker(φ̃) is trivial, but φ̃(x + I) = φ(x) = 0
R′ ⇒

x+ I = 0
R

+ I = I ( the zero element in R/I), so φ̃ is one-to-one. �

Sometimes we want to show that two rings resulting from different quotient construc-
tions are actually isomorphic. That can be hard, but if A,B come from the same “mother
ring” R by surjective homomorphisms φ, ψ as shown below then A ∼= B if the maps have
the same kernel in R.

R
φ

ւ
ψ

ց
A ↓π B

φ̃

ց
ψ̃

ւ
R/I

Figure 7.3. The situation in Corollary 7.2.2. Here ker(φ) =
I = ker(ψ) for surjective homomorphisms φ : R → A and
ψ : R → B.

7.2.2 Corollary. If φ, ψ are surjective homomorphisms from a ring R to other rings
A,B and if their kernels agree ker(φ) = ker(ψ), then A ∼= B as rings.
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Proof: Let I ⊆ R be their common kernel and π : R → R/I the quotient homomor-
phism. Applying the First Isomorphism Theorem twice we get A ∼= R/I ∼= B. �

Ideals in R vs. Ideals in R/I. If I is a two-sided ideal in an arbitrary ring R there is
a natural bijective correspondence

(

two-sided ideals J
in quotient ring R/I

)

←→
(

two-sided ideals J ⊆ R
that contain I

)

The following facts are easily verified.

7.2.3 Exercise. If R is a nonzero ring, I a two-sided ideal, and π : R → R/I is the
quotient homorphism, prove that

(a) If J is a two-sided ideal in R such that J ⊇ I then

J = π(J) = J/I ({u+ I;u ∈ J})

is a two-sided ideal in R/I.

(b) The correspondence J 7→ J is one-to-one.

(c) If J is a two-sided ideal in R = R/I, its pullback

J = π−1(J) = {x ∈ R : π(x) ∈ J}

is a two-sided ideal in R such that J ⊇ I and π(J) = J .

(d) The correspondence J → J is a bijection �

7.2.4 Example. In the polynomial ring F[x] let R = xF[x], the subring of polynomials
whose constant term is zero. The polynomial f(x) = x2 is in R, which contains the ideals

(f) = f ·R and 〈〈f〉〉 = f ·R+ Z · f

There is no identity element in R because deg(fh) ≥ 1 + 1 = 2 if f, h 6= 0 in R. In this
example 〈〈f〉〉 contains but is not equal to the principal ideal (f) because

(f) = x2 ·R = x2(xF[x]) = x3 · F[x]

(polynomials with a zero at the origin of third order or higher), while

〈〈f〉〉 = x3F[x] + Z · x2

contains element of degree 2. �

In 7.1.27 we showed that the evaluation homomorphisms ǫa : F[x] → F had kernels
that were principal ideals

ker(ǫa) = (x− a) · F[x]

We now show that all ideals in a polynomial ring F[x] are singly-generated principal
ideals, and that their generators are easily identified. This result has many important
generalizations.

7.2.5 Theorem. If F is a field and I an ideal in F[x], then I = f(x) · F[x] for some
f ∈ F[x]. Furthermore, the generator f is unique up to a nonzero scalar multiple:

(14)
Elements f, f ′ ∈ F[x] generate the ideal I ⇔ there is a constant c 6= 0
such that f ′ = cf(x).

14



Finally, if I is not the zero ideal it is equal to g(x)·F[x] for any nonzero element g(x) of
lowest degree in I.

Proof: If I = (0) take f = 0. Otherwise m = min{deg(f) : f 6= 0 in I} is a well-defined
integer m ≥ 0 and I contains an element f0 of this degree.

Case 1: deg(f0) = 0. Then f0 = c1- with c 6= 0 and I ⊇ c1- · F[x] is all of F[x].

Case 2: deg(f0) ≥ 1. Then deg h ≥ deg f0 if h 6= 0 in I and we may “long divide” by
f0(x) to get

h(x) = f0(x)q(x) + r(x) where

{

r = 0 (the zero polynomial), or
0 ≤ deg r < deg f0

But then r = h − f0q is in I and has lower degree than f0, which is impossible unless
r = 0, in which case we have h = f0q and h ∈ (f0). Hence I ⊆ (f0). The reverse inclusion
(f0) ⊆ I is obvious because f0 ∈ I ⇒ (f0) = f0 · F[x] ⊆ I. Therefore every nontrivial
ideal in F[x] is singly generated, by any nonzero element f0 ∈ I of minimal degree.

As for uniqueness, the multiplicative units UF[x] in F[x] are precisely the nonzero
constants {c1- : c 6= 0 in F}, so if (f ′) = (f) = I there exist g1, g2 such that f ′ = g1f and
f = g2f

′, so f ′ = g1g2 · f ′. Since F[x] has no zero divisors we must have g1g2 = 1- so
g1 and g2 are both units with gk = ck1- for suitably chosen constants, proving essential
uniqueness of the generators of I. �

All this is summarized by saying: If F is a field then F[x] is a principal ideal domain
– all ideals are singly generated. As shown in Exercise 7.1.25, no such result holds for
ideals in the ring F[x1, . . . , xn] if n ≥ 2. Nor does it hold in polynomial rings R[x] if the
coefficient ring R is not a field – for example R = Z[x].

7.3 Unique Factorization in Rings.
Here we discuss Euclidean domains which embody an abstracted version of the “division
with remainder” process in Z and polynomial rings F[x], which lay at the heart of our
discussion of unique prime factorization for integers n > 1 in Chapter 2 of these Notes.
Most of that discussion remains valid, with little change, in the much larger realm of
Euclidean domains.

7.3.1 Definition. Let R be a unital commutative ring without zero divisors (an integral
domain). It is a Euclidean domain if there exists a “degree map” d : R× → Z+ defined
on the nonzero elements in R× ⊆ R such that

(15)

(i) a, b 6= 0 in R⇒ d(ab) ≥ max{d(a), d(b)}
(ii) For all a, b 6= 0 there exist r, q ∈ R such that

a = bq + r with

{

r = 0, or
r 6= 0 and d(r) < d(b)

The value d = 0 is allowed, but we might have d(a) > 0 for all a 6= 0.

We do not assume there is an identity element in R, but this turns out to be a consequence
of the definition. The elements q, r are not unique: in R = Z we may write 5 = 3 ·2−1 =
1·3 + 2, and we can’t avoid this ambiguity by requiring “r ≥ 0” because R need not be
an ordered ring.

7.3.2 Exercise. Verify that the identity d(ab) ≥ max{d(a), d(b)} holds if

(a) d(ab) = d(a) + d(b) or if

(b) d(ab) = d(a)·d(b) and d(a) ≥ 1 for all a 6= 0. �
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7.3.3 Lemma. If R is a Euclidean domain with identity element 1 then

(i) d(1) = min{d(x) : x 6= 0}.
(ii) For x 6= 0, d(x) = d(1) = min{d(x) : x 6= 0} ⇔ x is a unit in R.

(iii) If x is a unit in R and x 6= 0 then d(ux) = d(x).

Proof: We have d(x) ≥ d(1) by (15) because

d(x) = d(x·1) ≥ max{ d(a), d(1) } ≥ d(1) for all x 6= 0

That proves (i). For (ii), if d(x) = d(1), we may write 1 = x·q + r as in (15). If r = 0
then x and q are both units in R; otherwise, r = 1− x·q would be a nonzero element in
R with d(r) < d(x) = d(1) which is impossible by (i). Conversely if u is a unit in R then
uu−1 = 1 and d(1) ≥ d(u); but by (i) we have d(u) ≥ d(1), hence d(u) = d(1). For (iii),
we have

d(x) = d(u−1ux) ≥ d(ux) ≥ d(x) �

Incidentally, the converse of (iii) fails to be true: d(x) = d(y) does not imply y = ux for
some unit u.

As examples of Euclidean domains we have

• Polynomial rings F[x] are Euclidean domains taking d(f) = deg(f) for f 6= 0, and
the usual algorithm for long division with remainder f(x) = q(x)·g(x) + r(x) for
g 6= 0 in F[x].

• Z[x] is not a Euclidean domain despite the fact that Z is an integral domain.
Problems arise in trying to define a degree map d : Z[x]× → Z+ and a corresponding
division process such that

f = q ·g + r with remainder r = 0 or d(r) < d(g)

for g 6= 0 in Z[x]. No such process (or degree map) can be defined for elements
f(x) = x and g(x) = 3x because the coefficient ring Z does not contain an element

“1
3
.”

• The integers Z become a Euclidean domain if we take d(m) = |m|.

The next example played an important role in the development of Number Theory.

7.3.4 Example (The Gaussian Integers Z[i] ). The “integral points”

Z[i] = {m+ in : m,n ∈ Z}

in the complex plane form a ring under the complex (+) and (·) operations, with identity
element 1 = 1 + i0. We get a Euclidean domain if we define the degree map to be

(16) d(z) = |z|2 = m2 + n2 for z = m+ in ∈ Z[i]

Obviously d(z) is an integer ≥ 1 if z 6= 0 and d(z ·w) = d(z) · d(w) ≥ max{d(z), d(w)}.
Defining the appropriate division process is a more subtle problem. If z, w 6= 0 then

w/z ∈ C and we may pick an integral point [w
z
] with minimal distance to w

z
. Generally

this “nearest neighbor” in Z[i] is unique but there could be as many as 4 such points. In
any case,

The real and imaginary parts of
w

z
− [w

z
] lie in the interval [− 1

2
, 1
2
]

16



so that

| w
z
− [w

z
] |2 ≤ (1

2
)

2
+ (1

2
)

2
= 1

2

Then we have

w = (w
z
)z = [w

z
] · z + (w

z
− [w

z
] ) · z

= [w
z
] · z + (w − [w

z
] · z ) = qz + r

where q ∈ Z[i] and the remainder r satisfies

|r|2 ≤ | w
z
− [w

z
] |2 · |z|2 ≤ 1

2
|z|2 < |z|2

as required. Here r ∈ Z[i] because r = w − [w
z
]z is in Z[i]. �

7.3.5 Exercise. For the following z, w ∈ Z[i] find all possible ways to write w = qz + r
with q ∈ Z[i] and r = 0 or |r|2 < |z|2 .

(a) z = 2 + i0, w = 8 + i9 (b) z = 3 + i5, w = 8 + i9 �

7.3.6 Exercise. Show that the multiplicative units in Z[i] consist of the four points
{1,+i,−1,−i}. We say that z 6= 0 is a prime in Z[i] if it is (i) not a unit, and (ii) cannot
be factored as a product z = w1 · w2 of non-units.

(a) Is 3 + i4 a prime in Z[i]?

(b) If p > 1 is a prime in the system of integers Z, is p + i0 always a prime in the
Gaussian integers Z[i]?

(c) The dihedral group D4 generated by

R90◦ = (90 degree rotation) and rx =(reflection across x-axis)

contains the R-linear operator

T (x, y) = (y, x) = R90◦ ◦ rx (reflection across the 45◦ line in R2)

If we identify C with the plane R2, so T (a+ ib) = (b + ia), and if z = a+ ib is
nonzero in Z[i], prove that

a+ ib is a prime in Z[i] ⇔ T (a+ ib) is a prime

(d) Prove that the reflection rx across the x-axis also sends primes to primes in Z[i].

Hints: If z ∈ Z[i] and u is a unit show that z is a prime ⇔ uz is a prime. �

7.3.7 Exercise. Use the observations in Exercise 7.3.6 to prove that all linear operators
in the dihedral group D4 permute the primes in Z[i].
Hint: Show that the elements T and rx generate the group D4.
Note: This simplifies the search for primes in Z[i]: any prime m+ in is A(m′ + in′) for
some A ∈ D4 and some prime in the sector 0 ≤ θ ≤ π/4 in C. �

We saw in 7.1.20 that all ideals in R = Z have the form I = m · Z for m = 0, 1, 2, . . .
We now show that every ideal in a Euclidean ring R is a principal ideal (single generator).

7.3.8 Theorem. Every Euclidean domain R is a principal ideal domain: Every ideal
I ⊆ R has the form

I = aR = {ax : x ∈ R}
for some a ∈ R. Furthermore,
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(i) A Euclidean ring has an identity element, so every principal ideal (a) = Ra
is equal to 〈〈a〉〉 and contains the generator a.

(ii) If I is any ideal in R, then I = (a) for any element a 6= 0 in I such that
d(a) = min{d(x) : x 6= 0 in I}.

(iii) We have aR = bR for nonzero a, b ∈ I ⇔ there exist units u, u′ ∈ UR such
that b = ua and a = u′b.

In particular, x 6= 0 generates I ⇔ x has minimal degree d(x) = min{d(y) : y 6= 0 in I}
in I.

Proof (ii): If I = (0) we may take a = 0. Otherwise I contains nonzero elements and
min{d(x) : x 6= 0 in I} is achieved. If a 6= 0 is any element of minimal degree then
I = Ra, for if b 6= 0 in I we may write b = qa + r with r = 0 or d(r) < d(a). But
r = b− qa ∈ I since a ∈ I, and by minimality of d(a) we must have r = 0. Thus I = Ra.

Proof (iii): Obviously if u ∈ UR we have aR = (au)R since a = (au)·u−1 ∈ (au)R. On
the other hand if aR = bR we can find u, u′ ∈ R such that b = au and a = bu′, so that
b = au = b(u′u). By cancellation we get u′u = 1 so u and u′ are both units.

Proof (i): Since R itself is an ideal we have R = aR for some a 6= 0, and then there
must be an element e such that a = ae. This is our candidate for the identity element.
In fact if b ∈ R then b = ax for some x, and then eb = e(ax) = (ea)x = ax = b for all b. �

The ring F[x] of polynomials in one variable is a Euclidean domain, but F[x1, . . . , xn]
is not when n ≥ 2 and its ideal structure is much more complicated. Likewise, the ring
Z[x] of polynomials with integer coefficients is not a Euclidean domain.

7.3.9 Exercise. Prove that the ideal I = {f ∈ F[x, y] : f(0, 0) = 0} is not a principal
ideal in R = F[x, y]. Exhibit two elements a, b such that I = 〈a, b〉 = aR+ bR.
Hint: Use the degree formula deg(f ·h) = deg(f)+deg(h) for nonzero polynomials in two
variables. �

7.3.10 Exercise. Prove by counterexample that R = Z[x] has ideals I that are not
principal ideals, and hence cannot be made into a principal ideal domain, no matter how
we attempt to define a degree map on R.
Hint: Try I = 〈〈2, x〉〉 = 2·Z[x] + xZ[x]. �

7.3.11 Exercise. We have seen in 7.3.3 that d(a) = d(b) in a Euclidean domain if there
is a unit u ∈ UR such that b = ua. Provide a counterexample: a familiar Euclidean
domain in which the converse

d(b) = d(a) ⇒ ∃u ∈ UR such that b = ua

is not always true. �

Associated Elements in an Integral Domain. The following remarks apply to an
arbitrary integral domain R as well as Euclidean domains. An element a 6= 0 in R is
a prime if it cannot be factored as a product a = bc of nonunits. If such nontrivial
factorizations exist the factors are nonunique “up to multiplied units” – i.e. if a = b′c′

there is a unit u ∈ UR such that b′ = bu and c′ = u−1c. This nonuniqueness gets to
be annoying, which suggests that we might not want to distinguish nonzero elements
a ∈ R× = R ∼ (0) that differ by a multiplied unit. Thus in R = Z we would not
distinguish between ±f and in R = F[x] we would lump together all scalar multiples to
get an equivalence class [f ] = {c·f : c 6= 0 in F}.

It is easy to verify that the following relation on the set R× of nonzero elements in
an integral domain

(17) a
R
∼ b ⇔ ∃u ∈ UR such that b = ua (we say “b is an associate of a”)
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is an RST equivalence relation whose equivalence classes are the “multiplicative cosets”
in (R×, · ) of the group (UR, · ),

(18) [a] = a·UR for a 6= 0 in R

Note that all units u ∈ UR get lumped together in the single equivalence class [1].
Multiplication in R induces a well-defined multiplication operator (·) on the quotient

space R×/UR = {[a] : a ∈ R×} of multiplicative cosets if we define

[a] · [b] = [ab] for all a, b 6= 0 in R

This makes sense independent of the coset representatives a, b because

a′
R
∼ a, b′

R
∼ b ⇒ a′ = ua, b′ = u′b for u, u′ ∈ UR ⇒ a′b′ = (ab)·uu′

so that
[a′]·[b′] = (a′b′)UR = ab(uu′UR) = ab·UR = [a]·[b] .

The surjective quotient map π(a) = [a] from (R×, · ) → (R×/UR, · ) intertwines the
product operations (·) in these two systems.

On the other hand the (+) operation in R does not induce a well-defined operation
on cosets; the system (R×/UR, · ) is only an abelian semigroup – a system with an
associative and commutative multiplication law. Although it contains a multiplicative
identity element [1], R×/UR cannot be made into a group because multiplicative inverses
[a]−1 don’t exist; nor can it be made into a ring, because it lacks a sensible (+) operation.

Nevertheless, many issues about factorization, divisibility, and primality in commu-
tative rings are easier to manage if we consider products of equivalence classes [a] in
R×/UR instead of individual ring elements a 6= 0. For instance we say that

A class [a] is prime if [a] cannot be written as a product [b]·[c] of nontrivial
classes [a], [b] 6= [1].

In the multiplicative semigroup R×/UR there is just one trivial factor, namely [1], while
in R itself all units must be regarded as trivial factors.

Finally, because d(u) = 1 for any unit in R and d(au) = d(a), the degree map
d : R× → Z+ is constant on classes and induces a well-defined map on the quotient space

(19) d̃ : R×/UR → Z+ with d̃([a]) = d(a)

which has the useful property

d̃([a]·[b]) ≥ max{ d̃([a]), d̃([b] )} .

7.3.12 Exercise. In an integral domain R we say that “a divides b,” or “b is a multiple
of a,” indicated by writing a|b, if b = ac for some c. In the semigroup R×/UR we say
that class [a] divides class [b] if [b] = [a]·[c] for some class [c].

(a) If a, b 6= 0 in R show that a|b⇔ [a] divides [b].

(b) If a 6= 0 in R show that a is a prime in R⇔ [a] is a prime class in R×/UR. �

Prime Factorizations in Euclidean Domains. We now show that every class [a] 6= [1]
in a Euclidean ring has a factorization into primes [a] = [p1]·[p2]·. . .·[pr] that is unique
except for the order in which the factors appear. (Remember: by our definitions [1] is
not a prime.) We start with the existence of such factorizations.
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7.3.13 Proposition (Existence of Prime Factorizations). In any Euclidean domain
R every nonzero nonunit a can be factored as a product a = p1 ·. . . ·pr of primes in R.
Likewise any class [a] 6= [1] is a product [p1]·[p2]·. . .·[pr] of prime classes.

Proof: There is nothing to do if a is already a prime. Otherwise we argue by induction
on degree d(a), starting from d(1) = min{d(x) : x 6= 0} ≥ 0. By 7.3.3 the element a is a
unit, and not a prime, if d(a) = d(1) so in this case the claim is true by default. Thus
we may assume d(a) > d(1) and there are nonunits b, c such that a = bc. Then

d(1) < d(b), d(c) ≤ d(bc) = d(a) ,

by definition of the degree map.

Case 1. If both d(b), d(c) < d(a) the Inductive Hypothesis implies that b and c both
have prime factorizations, and hence so does a by combining the prime factors of b, c.

Case 2. One of the factors, say b, has d(b) = d(a). [We make no claim yet about d(c)
except that d(c) ≤ d(a).] Since b divides a we have a ∈ I = bR. By 7.3.8, an element
x 6= 0 is a generator of this principal ideal ⇔

d(x) = min{d(y) : y 6= 0 in I}

Since b is a generator this minimum is equal to d(b), so I is generated by any element
x 6= 0 such that d(x) = d(b).

Taking x = a we get aR = bR, hence by 7.3.8(iii) b = ua for some unit u ∈ UR.
Then b = ua = ubc = b ·(uc) and by cancellation of the nonzero factor b we conclude
that uc = 1 and c = u−1 is a unit, contradicting nontriviality of the given factorization
a = bc. Therefore Case 2 cannot arise, Case 1 prevails, and a has a prime factorization
as required to complete the induction step. �

7.3.14 Corollary. If a 6= 0 in a Euclidean domain R, and a = bc with b, c both nonunits,
then d(b) < d(a) and d(c) < d(a).

The remaining issue is uniqueness of such prime factorizations, which is closely related
to the notion of greatest common divisor gcd(a, b) of nonzero elements a, b in R. This
concept makes sense in any integral domain, not just Euclidean domains.

7.3.15 Definition. If R is an integral domain, a greatest common divisor (GCD)
of elements a, b 6= 0 is any nonzero element c such that (i) c|a and c|b, and (ii) If c′|a
and c′|b then c′|c. We make no claims about “positivity” of such an element, if it exists,
since R need not be an ordered ring.

If gcd(a, b) exists it is unique up to a multiplied unit u ∈ UR. [ If c, c′ both satisfy
conditions (i)+(ii) then there exist r, r′ ∈ R such that c′ = r′c = (r′r)c′ and since c′ 6= 0
we may cancel to get rr′ = 1, so both are units.] Thus if a GCD exists it determines a
unique class [c] in the semigroup. In this sense the class [gcd(a, b)] is unique even if its
representative gcd(a, b) ∈ R is not.

7.3.16 Theorem (Existence of GCD). If R is a Euclidean domain any two elements
a, b 6= 0 have a greatest common divisor c. This element is unique up to a multiplied
unit and lies in the ideal I = Ra+Rb. The unique class [gcd(a, b)] is determined by any
nonzero element of minimal degree in I.

Proof: If the ideal I reduces to (a) = Ra (or to (b) = Rb) then b ∈ Ra and a|b; thus a
is a divisor of both a and b, so (i) is satisfied. But if c′ is any common divisor we have
c′|a, so a serves as the gcd(a, b). In this situation we obviously have

d( gcd(a, b)) = d(a) = min{d(x) : x 6= 0 in I} ,
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by 7.3.8(ii).
In general, I 6= (0) and there is some nonzero x ∈ I of minimal degree, so by 7.3.8

we have I = xR. Thus x|a and x|b. For any other common divisor x′ of a and b we have
x′|(ra + sb) for all r, s ∈ R. Since x itself is in I = Ra + Rb we get x′|x as required to
make x a GCD for a, b. �

7.3.17 Exercise. If a, b 6= 0 in a Euclidean ring R show that the class [gcd(a, b)]
determined by any GCD depends only on the classes [a] and [b]. �

Thus we may speak of the GCD of two classes [a], [b] in R×/UR.
Existence of a GCD is crucial in proving uniqueness of prime factorizations in Eu-

clidean rings. GCDs exist in rings more general than Euclidean domains; for instance
multi-variable polynomial rings F[x1, . . . , xn] and Z[x1, . . . , xn] are not Euclidean when
n ≥ 2. Nevertheless every such polynomial has a unique factorization into primes (non-
constant irreducible polynomials). But in such rings existence of gcd(a, b) has to be
proved by other methods, and need not have the simple form d = ra + sb for r, s ∈ R.
Though the proofs in these settings differ from those given below for Euclidean rings,
the following properties of the GCD play a pivotal role in all discussions of unique fac-
torization, as they did for R = Z.

7.3.18 Definition. If R is a Euclidean ring and a, b 6= 0, we write a ∼ b if they differ by
a multiplied unit, with a = ub. They are relatively prime if the GCD is itself a unit,
so gcd(a, b) ∼ 1. An element a 6= 0 is prime if it is a nonunit and

a = bc =⇒ either b ∼ 1 or c ∼ 1 (no nontrivial factorizations)

If a 6= 0 is a nonunit we have seen that it has at least one factorization into primes. Note
that if a is a unit and b 6= 0 we have gcd(a, b) ∼ 1. [ If d is a GCD then d|a ⇒ a = dx
for some x, and then 1 = d·(xa−1) ⇒ d ∈ UR, so d ∼ 1.]

7.3.19 Proposition. Let R be a Euclidean ring, a 6= 0, and p ∈ R× a prime. Then

Either p|a or p is relatively prime to a.

Proof: If d = gcd(p, a) then d|p, p = xd for some x, and at least one of the factors is a
unit. If d is a unit we have gcd(p, a) ∼ 1. Otherwise x is a unit and we have p|a because

d = x−1p divides a =⇒ a = y ·(x−1p) = (yx−1)·p ⇒ p|a . �

7.3.20 Exercise. If p is a prime in a Euclidean ring R show that

(a) The only divisors of p are u and up where u ∈ UR is any unit.

(b) If p, q are primes in R then p ∼ q or gcd(p, q) ∼ 1. �

7.3.21 Proposition. Let R be a Euclidean ring, let a, b 6= 0, and let p be a prime. If p
divides ab but does not divide a, then p must divide b.

Proof: By 7.3.19 we must have gcd(p, a) ∼ 1 if p does not divide a, and then by 7.3.16
we can find r, s ∈ R such that 1 = gcd(p, a) = ra+ sp. It follows that

b = b·1 = rab+ sbp .

Since p|ab we conclude that p divides b, as claimed. �

7.3.22 Corollary. If p is a prime in a Euclidean ring R and p divides a product of
nonunits a1 ·. . .·an, then there is some index i such that p|ai.
Proof: If p|a1 we are done; otherwise p divides a2 ·. . .·an and we procede inductively.
�
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7.3.23 Theorem (Uniqueness of Prime Factorization). In a Euclidean ring R every
nonunit a 6= 0 has an essentially unique factorization into primes. In terms of classes
in R×/UR, if [a] 6= [1] there are distinct prime classes [p1], . . . , [pr] and multiplicities
mi ∈ N such that [a] =

∏r

i=1[pi]
mi . This factorization is unique except for the order in

which the factors appear.

Proof: Prime factorizations exist by 7.3.13. If q1 ·. . .·qs is another prime factorization
we may assume r ≤ s by switching roles of the two products. Then argue inductively: if
p1 divides q1 we have p1 ∼ q1 since both are primes. Otherwise, p1 does not divide q1
and by 7.3.21 p1 must divide q2 ·. . .·qs. By 7.3.22 there must be an index i1 such that
p1 ∼ qi1 .

Dividing both products by p1 we are left with

p2 ·. . .·pr ∼ q1 ·. . .·qi1−1 · qi1+1 ·. . .·qs

etc. At the end of this inductive process all the pi will have cancelled; relabeling the
surviving qj we arrive at

1 ∼ qr+1 ·. . .·qs
which is impossible unless r = s. After relabeling the qj we get pi ∼ qi for 1 ≤ i ≤ r. �

7.3.24 Definition. If a 6= 0 is a nonunit in a Euclidean ring R, the set sp(a) of distinct
prime divisors [p1], . . . , [pr] is called the spectrum of a and the exponents mi are their
multiplicities.

The units in the Euclidean ring R = F[x] are the nonzero constant polynomials
UR = {c1- : c 6= 0 in F}, and the primes are the nonconstant polynomials that are
irreducible (no nontrivial factorizations f = f1f2). By degree considerations, every
first degree polynomial f = ax+ b (a 6= 0) is irreducible, but depending on the nature of
the coefficient field F there may be irreducible polynomials of higher degree, for instance
x2 − 2 in Q[x] or x2 + 1 in R[x]. If deg(f) ≥ 1 and f =

∏m

i=1 fi with nonconstant
factors, one could multiply the fi by various nonzero constants; however if f and the fi
are monic, with leading coefficients = 1, then the fi are unique elements of F[x]. It is
often convenient to normalize things this way to deal with nonuniqueness of the factors
modulo multiplied units.

The following simple properties of the GCD lead to a fast algorithm for finding the
GCD of two elements in a Euclidean ring

7.3.25 Exercise. If R is a Euclidean ring and a, b 6= 0 prove that

(a) gcd(a, b) ∼ gcd(b, a)

(b) gcd(a, b) ∼ gcd(a, b+ ca) for any c ∈ R.

(c) gcd(a, b) ∼ a ⇔ a divides b. �

Property (b) is the basis of the GCD algorithm, described next.

7.3.26 Example. (GCD Algorithm). If a, b 6= 0 in a Euclidean ring we may label
them so that d(a) ≥ d(b). Applying the division algorithm, we write a = q1b + r1 with
r1 = 0 or d(r1) < d(b). By 7.3.25(b) we have

gcd(a, b) ∼ gcd(q1b+ r1, b) ∼ gcd(b, r1)

If r1 = 0 then b|a and we’re done: gcd(a, b) ∼ b. If not, we have reduced the degree
of the element with the larger degree. Relabeling a′ = b, b′ = r1 we restore the relation
d(a′) ≥ d(b′) and may apply the same process again. This recursive procedure (shown
below) must eventually terminate, and in fact does so quite rapidly.
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gcd(a, b) a = q1b+ r1 Now relabel a1 = b, b1 = r1

gcd(a1, b1) a1 = q2b1 + r2 Now relabel a2 = b1, b2 = r2

gcd(a2, b2) a2 = q3b2 + r3 Now relabel a3 = b2, b3 = r2

...
...

gcd(ak, bk) ak = qk+1bk + rk+1 With rk+1 = 0, so bk ∼ gcd(ak, bk)

At the first step in which the remainder rk+1 is zero, bk divides ak and

bk ∼ gcd(ak, bk) ∼ . . . ∼ gcd(a, b)

Done. �

7.3.27 Example. Find gcd(22471, 3266).

Solution: We have

22471 = 3266(6) + 2875

3266 = 2875(1) + 391

2875 = 391(7) + 138

391 = 138(2) + 115

138 = 115(1) + 23

115 = 23(5) + 0

Therefore gcd(a, b) = 23 �

Note: This algorithm is fast and yields the gcd without any need to find prime divisors
of a and b. The same procedure works to produce the gcd of two nonzero polynomials
f, h ∈ F[x], or two Gaussian integers z, w ∈ Z[i]. �

If a, b are nonunits in a Euclidean ring R they may have a certain number of prime
divisors in common, so we may write the factorizations as

a = p1 . . . pk · ak+1 . . . ar and b = p1 . . . pk · bk+1 . . . bs

with r, s ≥ k and gcd(ai, bj) ∼ 1 for i, j > k.

7.3.28 Exercise. If a, b 6= 0 are in a Euclidean ring R, show that gcd(a, b) ∼ p1 . . . pk
(product of their common primes), or gcd(a, b) ∼ 1 if a, b have no prime divisors in com-
mon. �

Euclidean rings fit into a larger hierarchy
„

commutative rings
R 6= (0)

«

⊇

„

commutative rings R

with identity 1R

«

⊇

„

integral domains:
∃ 1

R
, no zero divisors

«

⊇

„

UFD = Unique
Factorization Domains

«

⊇

„

PID = Principal Ideal Domains:
Every ideal I = aR for some a

«

⊇

„

Euclidean
Domains

«

Here R ∈ UFD means every nonunit a 6= 0 has a unique factorization into nonunit
primes, as in 7.3.23; we have already indicated the meaning of PID’s in proving that
every Euclidean ring is a Principal Ideal Domain, see 7.3.8. It must of course be proved
that (UFD) ⊇ (PID). Further work with commutative rings would yield a crucial result
that goes back to the work of Gauss (proof deferred to Part II of these Notes).

7.3.29 Theorem (Gauss). If R is any UFD, so is the polynomial ring R[x] with
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coefficients in R.

If F is a field it is a UFD by default: all nonzero elements are units, and there are no
primes; the ring of integers Z ∈ UFD because it is Euclidean. From this we get

7.3.30 Corrolary. The polynomial rings Z[x1, . . . , xn] and F[x1, . . . , xn] are unique
factorization domains for any n.

Proof: If R = F or Z then by 7.3.29 we have

R ∈ UFD ⇒ R[x1] ∈ UFD ⇒ R[x1, x2] ∼= (R[x1])[x2] ∈ UFD ⇒ etc �

We have seen in 7.3.9 that F[x1, x2] is not a PID, so to deal with factorization of
polynomials in several unknowns one must expand one’s view to include at least the
class of UFD rings. On the other hand our work with Euclidean domains is the basis for
understanding PID’s, and then in turn the class UFD. All this will be covered in Part
II of these Notes, and is based on the observation that every unital integral domain can
be embedded in a unique “field of fractions” F = Frac(R), which is generated by the
elements of R much as the field of rationals Q is obtained from the ring of integers Z

by forming “fractions” m
n

with n 6= 0. Even if an integral domain R is not a Euclidean
ring, to which the preceding theory would apply, one can learn a lot about factorizations
in the polynomial ring R[x] by examining the ring F[x] with F = Frac(R), which in an
obvious sense contains R[x] and is a UFD. This is the fundamental idea behind the proof
of Gauss’ theorem.

7.4 The Fraction Field Frac(R) of an Integral Domain.
The reason that the integral domain Z[x] is not a Euclidean domain is that long division
with remainder of certain polynomials, say (x2 + 1)/3x, leads to coefficients with non-
trivial denominators that no longer lie in the coefficient ring Z; but they do lie in the
field of fractions Q = Frac(Z). In the present section we assume R is an integral domain,
which by definition has an identity element. We will see that the presence of an identity
element in R is essential in constructing the field of fractions Frac(R).

Given such an R we first observe that if F is a field and φ : R → F a one-to-
one homomorphism then φ is automatically unital, with φ(1

R
) = 1F. In fact, the set

of nonzero elements F× ⊆ F is an abelian group under multiplication, and the only
idempotent element (solution of x2 = x) in a group is its identity element. Since φ(1

R
) 6=

0 and 12
R

= 1
R

the element x = φ(1
R
) satisfies the idempotent equation in F× and we

have φ(1
R
) = 1F.

Second, there is a smallest subfield K ⊆ F that contains the unital subring φ(R). This
field is generated by the elements of φ(R) and it is easy to verify that it consists of the
elements

(20) K = {φ(a)φ(b)−1 : a, b ∈ R and b 6= 0}

in F. We now show that, up to an isomorphism of fields, K is independent of the field F

in which R was embedded.

7.4.1 Lemma. (Uniqueness of the Generated Field). Let R be an integral domain.
Let F1,F2 be fields and φk : R→ Fk one-to-one homomorphisms such that φk(R) gener-
ates Fk as a field,as in (20). Then there is a unique isomorphism of fields ψ : F1 → F2,
automatically unital, such that ψ ◦ φ1 = φ2 as in the following commutative diagram.

Proof: The rings Rk = φk(R) are unital and ψ̃ = φ2 ◦ φ−1
1 : R1 → R2 is a bijective

unital homomorphism, hence an isomorphism. If x = ab−1 in F1 with a, b ∈ R1 and
b 6= 0, we define ψ : F1 → F2 letting

ψ(x) = ψ̃(a)ψ̃(b)−1 .
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The commutative diagram in Lemma 7.4.1.

φ1

φ1(R) ⊆ F1

ր
R ↓ψ̃ ↓ψ
ց
φ2

φ2(R) ⊆ F2

This map is well-defined because if ab−1 = a1b
−1
1 for a, b, a1, b1 in R1 we have

ab−1 = a1b
−1
1 in F1 ⇔ ab1 = a1b

⇒ ψ̃(a)ψ̃(b1) = ψ̃(a1)ψ̃(b) in R2

⇒ ψ̃(a)ψ̃(b)−1 = ψ̃(a1)ψ̃(b1)
−1 in F2

It is also a bijection: onto, because ψ̃(R1) = R2 and these subrings generate the Fk as
in (20). It is one-to-one because ψ̃ is a bijection, hence

ψ(ab−1) = ψ(a1b
−1
1 ) ⇒ ψ̃(a)ψ̃(b)−1 = ψ̃(a1)ψ̃(b1)

−1 ⇒ ψ̃(ab1) = ψ̃(a1b)

⇒ ab1 = a1b in R ⇒ ab−1 = a1b
−1
1 in F1

Finally, ψ is a homomorphism of fields because

ψ(ab−1 · a1b
−1
1 ) = ψ(aa1 · (bb1)−1) = ψ̃(a)ψ̃(a1)[ψ̃(b)ψ̃(b1)]

−1

= ψ̃(a)ψ̃(a1)ψ̃(b1)
−1ψ̃(b)−1 = ψ(ab−1) · ψ(a1b

−1
1 )

and similarly for sums. �

7.4.2 Theorem. (Fraction Field Construction). If R is an integral domain there
exist a field F = Frac(R) and a one-to-one unital homomorphism φ : R → F such that
φ(R) generates F as in (20). The pair (φ,F) is essentially unique in the sense of Lemma
7.4.1.

Proof: We define an RST equivalence relation on the set of ordered pairs R × R× =
{(a, b) : a, b ∈ R, b 6= 0}, letting

(21) (a, b) ∼ (a′, b′) ⇐⇒ ab′ = a′b in R

(an idea shamelessly lifted from the construction of the rationals in Chapter 2). With
this in mind, think of pairs (a, b) as defining “fraction symbols” a

b
, whose equivalence

classes are denoted by [a
b
]. When the quotient space F = (R×R×)/(∼) is equipped with

the appropriate algebraic operations (+), (·) it will become the desired fraction field.
These operations are defined by referring to class representatives. We write

0 = [0
1
] and 1 = [1

1
] = [x

x
] for any x 6= 0 ,

and then define operations on equivalence classes

(22)

[a

b

]

+
[ c

d

]

=

[

ad+ bc

bd

]

[a

b

]

·
[ c

d

]

=
[ac

bd

]

To see that these make sense independent of the class representatives used to determine
the outcomes, consider equivalent pairs (a′, b′) ∼ (a, b) and (c′, d′) ∼ (c, d). Then by (21)
we have ab′ = a′b, cd′ = c′d, and for the (+) operation we may rewrite

adb′d′ + bcb′d′ = a′bdd′ + cd′bb′ = bdd′a′ + bb′c′d
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Thus

b′d′(ad+ bc) = bd(a′d′ + b′c′) and
ad+ bc

bd
∼ a′d′ + b′c′

b′d′

as required. The proof for the (·) operation is similar but easier.
Once we know the operations are well-defined, it is immediate that both operations

are commutative, associative, and satisfy the usual distributive laws because these hold
in R. Furthermore

0 ·
[a

b

]

= 0 1 ·
[a

b

]

=
[a

b

]

0 +
[a

b

]

=
[a

b

]

for all [a
b
], and it is a straightforward matter to check the commutative ring axioms for

the system (F,+, · ).
7.4.3 Exercise. Verify the following properties starting from definitions (21) and (22)

(a) The (+) operation makes (F,+) an additive group with 0 as its additive identity

element, the additive inverse of [a
b
] being [−a

b
] = [−1

1 ] · [a
b
] = −1 · [a

b
].

(b) The multiplication operation (·) is associative and commutative, and the usual
distributive laws connecting (+) and (·) hold.

(c) F has 1 as its multiplicative identity element. �

It remains only to show that every nonzero element [a
b
] has a multiplicative inverse.

First, the fraction symbol b
a

makes sense because

[a
b
] 6= 0 ⇒ a

b
6∼ 0 ∼ 0

1 ⇒ a = 1·a 6= 0·b = 0 in R ,

by (21), and then [a
b
]
−1

= [ b
a
] because [a

b
] · [ b

a
] = [ab

ab
] = [ 1

1 ] = 1. Thus

Any nonzero element [a
b
] in F has a multiplicative inverse [a

b
]
−1

= [ b
a
].

Finally, we define the embedding φ : R → F letting φ(x) = [x1 ]. This map is one-to-
one because (x, 1) ∼ (y, 1)⇔ x = y in R. It is also a unital ring homomorphism because
φ(1) = 1 and

φ(xy) = [xy
1
] = [x

1
] · [y

1
] = φ(x)φ(y)

φ(x + y) = [x+ y

1
] = [x

1
] + [y

1
] = φ(x) + φ(y)

in F. Clearly φ(R) generates F because an arbitrary element in F can be written as

[a
b
] = [a1 ] · [1

b
] = [a1 ] · [ b1 ]

−1
= φ(a)φ(b)−1

for a, b ∈ R, b 6= 0. �

It should be obvious from the discussion at the end of Chapter 2 that Q = Frac(Z).

7.4.4 Exercise. Prove that

[ac
bc
] = [a

b
] in Frac(R) for all c 6= 0

Thus the representative of a nonzero class [a
b
] can be chosen so that gcd(a, b) ∼ 1. �

7.4.5 Exercise. In Q = Frac(Z) the identity [a
b
] = [a′

b′
] does not necessarily mean that

a′ = ac and b′ = bc for some c 6= 0. Exhibit two fraction symbols a
b
∼ a′

b′
that are
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equivalent, but a′

b′
is not of the form ac

bc
for any nonzero c.

Hint: Keep it simple. Try various fraction symbols equivalent to 1
3 . �

7.4.6 Exercise. If a, b 6= 0 and gcd(a, b) ∼ 1, prove that [a
b
] = [a′

b′
] if and only if there

exists some c 6= 0 such that b′ = bc and a′ = ac. �

7.4.7 Exercise. If an integral domain R is already a field (every nonzero element has a
multiplicative inverse), verify that R ∼= Frac(R) as fields. �.

7.4.8 Example (Fields of Rational Functions). Let F be a field and R = F[x] an
arbitrary polynomial ring – an integral domain whose identity element is the constant
polynomial f = 1-. The fraction field F(x) = Frac(F[x]) is the field of rational func-
tions in the indeterminate x whose elements are determined by quotients of polynomials

P (x)

Q(x)
where P (x), Q(x) ∈ F[x] and Q 6≡ 0

However, elements in F(x) are actually the equivalence classes of the RST relation

P (x)

Q(x)
∼ P ′(x)

Q′(x)
⇔ P (x)Q′(x) = P ′(x)Q(x) in F[x]

The operations (+) and (·) in F(x) are determined by the familiar operations on fraction
symbols

P

Q
+
R

S
=
PS +QR

QS
and

P

Q
· R
S

=
PR

QS

Similarly, we can define the fraction field Frac(R) = F(x1, . . . , xn) of a multi-variable
polynomial ring R = F[x1, . . . , xn]. This consists of equivalence classes of formal quo-
tients P (x1, . . . , xn)/Q(x1, . . . , xn) whose denominators are not the zero polynomial, for
instance (x2 + xy + y2)/(x2 − y2) in C(x, y).

Notation. In most situations it is customary to ignore the distinction between fraction
symbols P/Q and their equivalence classes [P/Q] in the fraction field. The fraction field
of a polynomial ring F[x] is usually denoted F(x) instead of Frac(F[x]). �

7.5. Fields and Maximal Ideals in Commutative Rings.
An ideal I in a commutative ring is proper if (0) 6= I 6= R. It is a maximal ideal if

I 6= R and there are no ideals J such that I
⊂
6= J

⊂
6= R. Maximal ideals play a crucial

role in many investigations. For instance they are needed to understand how one might
enlarge a field F by “adjoining” to F some roots to an irreducible polynomial f(x) ∈ F[x],
which by definition has no roots in the field F. For instance x2 − 2 ∈ Q[x] has no roots
in the rationals, but we will see how to construct (using maximal ideals) a larger field
E = Q(

√
2) ⊇ Q in which a square root of 2 exists.

In algebraic geometry maximal ideals provide a bijective correspondence between the
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geometric space Cn and algebraic objects in the polynomial ring C[x] = C[x1, . . . , xn].

(23)

Hilbert Nullstellensatz. An ideal M ⊆ C[x] is a maximal ideal ⇔ there
exists a point p = (p1, . . . , pn) in coordinate space Cn such that M = ker(ǫp)
where ǫp is the “evaluation homomorphism”

ǫp(
∑

α∈Zn
+

cαx
α) =

∑

α∈Zn
+

cα p
α1

1 · . . . · pαn

n

This is equivalent to saying: M is a maximal ideal in C[x] ⇔ it is the ideal

M = (x1 − p1) ·C[x] + . . .+ (xn − pn) ·C[x]

generated by the first degree polynomials (x1 − p1), . . . , (xn − pn) for some
point p = (p1, . . . , pn) in complex coordinate space Cn.

This result, which we won’t prove here, establishes a bijective correspondence between
geometric and algebraic entities

( maximal ideals in C[x] ) ←→ ( points p = (p1, . . . , pn) in Cn)

It is just the first step in building an extensive concordance between algebraic objects in
C[x] and geometric curves in complex coordinate space Cn.

There are no maximal ideals in a field. In fact if I ⊆ R is an ideal in a field and
I 6= (0), then any element a 6= 0 is a unit, hence aR = R and I = R; in particular a field
has no proper ideals. In fact,

7.5.1 Proposition. If R 6= (0) is an arbitrary commutative ring with identity (existence
of zero divisors in R not excluded), then R has no proper ideals ⇔ R is a field.

Proof (⇒): Let π : R→ R/I = R be the quotient homomorphism, noting that R 6= (0)
since I 6= R. If a 6= 0 in R and a ∈ R is any preimage, so that π(a) = a, then J = aR
is an ideal in R and its pullback J = π−1(J) is an ideal in R that contains both I and
a. Since I is maximal we must have J = R and J = R, so there is some x ∈ R such
that a ·x = 1 = π(1). Here, 1 is an identity for R because π is surjective, and 1 6= 0
(otherwise the identity element 1 would lie in I and I = R, contrary to the definition of
maximality). We conclude that every nonzero element a in R is a unit, so R is a field.

Proof (⇐): If I 6= (0) is an ideal in a field R any x 6= 0 in I has a multiplicative inverse
x−1. Then every element a ∈ R can be written as a = (ax−1)·x ∈ (ax−1)I ⊆ I, hence
I = R. �

As noted above, an ideal I in a commutative ring with identity 1 is all of R if 1 ∈ I or if
I contains a unit. In particular, I = aR is equal to R⇔ a ∈ UR.

Maximal ideals always exist in any commutative ring with identity, although con-
structing such ideals is another matter. A Zorn’s lemma argument (Axiom of Choice
from set theory) shows that

(24)
If I 6= R is an ideal in a commutative ring R with identity, then I is contained

in a maximal ideal M , so I ⊆M ⊂
6= R.

The maximal ideal M containing J is not necessarily unique.
Maximal ideals in Z are of considerable interest, and are easily determined.

7.5.2 Example. The maximal ideals in Z are the principal ideals (p) = p·Z for primes
p > 1. Cosets in the quotient space Z/(p) are precisely the (mod p) congruence classes
in Zp, so Z/(p) = Zp as sets.

Discussion: As we saw in 7.3.8, every ideal in Z is a principal ideal (m) = m ·Z for
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some m ≥ 0. If m = 0 then (m) = (0) is trivial, and if m = 1 (a unit) then (m) = Z and
Z/(m) is trivial. Neither ideal is maximal in Z. Assuming m > 1, we show that

(25) (m) = m·Z is a maximal ideal in Z ⇔ m is a prime.

Proof (⇐): We argue by contradiction. If p is a prime I = (p) is maximal, because

otherwise there would be some n > 1 such that (p)
⊂
6= (n)

⊂
6= Z. But then p ∈ (n), p = nx

for some x 6= 0 in Z, and at least one of the factors is a unit. Since n > 1 and UZ = {±1},
n is not a unit so x must be a unit. That would imply x·Z = Z and hence

(n) = n·Z = n·x·Z = p·Z is equal to (p),

contrary to our hypotheses.

Proof (⇒): Conversely if m > 1 is not a prime it would be a product m = ab with nei-

ther factor a unit. We show that this would imply (m)
⊂
6= (a)

⊂
6= Z contrary to maximality

of (m), thereby proving (⇒).
The equality m = ab implies

(m) = m·Z = ab·Z ⊆ a·Z

so (m) ⊆ (a); we argue by contradiction to show that (m) 6= (a). If (m) = (a) then by
7.3.8(iii) there would be a unit u such that m = au. Since ab = m = au and a 6= 0,

cancellation shows that b = u (a unit), contrary to our hypotheses. Thus (m)
⊂
6= (a).

We also have (a) 6= Z, otherwise 1 = ax for some x and a would be a unit. Contra-

diction. Therefore (m)
⊂
6= (a)

⊂
6= Z and (m) would not be maximal. �

We now apply these remarks to a polynomial ring R = F[x] over a field F. The
discussion uses the fact that F[x] is more than a ring, it is a commutative associative
algebra over F: in addition to the (+) and (·) ring operations there is a natural scaling
operation a 7→ c · a for elements c ∈ F. Scaling has the properties

c·(f + h) = (c·f) + (c·h)
c·(fh) = (c·f)h

(bc)·f = b·(c·f)
1

F
· f = f for all f

and c · (∑m

i=0 aix
i) =

∑m

i=0(c·ai)xi. This makes F[x] into an infinite dimensional vector
space over F with basis vectors 1-, x, x2, . . . , xn, . . .

The ground field F is itself an associative algebra, with scaling operation a 7→ ca;
furthermore, F[x] contains a faithful copy of the ground field, namely the set of constant
polynomials F̃ = {c1- : c ∈ F}. The embedding map j : c 7→ c·1- from F to F̃ ⊆ F[x] is a
unital isomorphism of fields.

7.5.3 Theorem (Maximal Ideals in F[x]). If F is a field and f(x) a nonconstant
polynomial in F[x], the principal ideal I = (f) is a maximal ideal ⇔ f(x) is an irreducible
polynomial (no nontrivial factorizations f = g ·h).
Proof (⇐): If (f) is not maximal there is some ideal such that (f)

⊂
6= I

⊂
6= F[x]. But all

ideals in this Euclidean ring are principal, so I = (h) for some h 6= 0 and we may write
f = gh. The factor g can’t be a unit, since otherwise (f) = (h) = I; and h can’t be a
unit because we would then have (h) = F[x]. Thus f is reducible (not irreducible) when
(f) is not maximal, proving (⇐). �

Proof (⇒): If f is reducible we may write f = gh in which both factors are non-units.
Then (h) 6= F[x], otherwise there would be some u ∈ F[x] such that hu = 1- and h would
be a unit. Contradiction.
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Furthermore (f)
⊂
6= (h). We know (f) ⊆ (h) because f = gh, but in fact (f)

⊂
6= (h);

otherwise (f) = (h) and deg(f) = deg(h) since the generators of a principal ideal are
precisely the nonzero elements of minimal degree. But deg(f) = deg(gh) = deg(g) +
deg(h) implies deg(g) = 0, so g(x) is constant with g = c1- for some c 6= 0, and g is a unit

contrary to our hypotheses. Hence (f)
⊂
6= (h)

⊂
6= F[x] and the ideal (f) is not maximal,

proving (⇒). �

7.5.4 Corollary. If F is a field and f ∈ F[x] is a nonconstant polynomial, then the
quotient ring R = F[x]/(f) is a field ⇔ f(x) is irreducible.

The fact that this quotient ring is already a field is surprising. You might expect to have
to form “fractions ” a/b involving elements a, b ∈ F[x]/(f) in order to obtain a field, but
that is not so.

7.5.5 Example. The polynomials x2 − 2 in Q[x] and x2 + 1 in R[x] are irreducible over
Q and R respectively. We shall identify the quotient fields as

(26)
Q[x]/(x2 − 2) ∼= Q +

√
2 Q (the field constructed in Example 7.1.6)

R[x]/(x2 + 1) ∼= C = R + iR (the field of complex numbers).

In the first example the effect of the quotient construction is to adjoin a new entity
√

2
to the ground field Q to obtain a field extension E = Q(

√
2) containing roots of x2 − 2,

which did not exist in Q. In the second, a new element
√
−1 has been adjoined to R. A

detailed explanation of how these new roots arise is given in Section 7.6. �

Irreducible Polynomials. If F is a field the “primes” in F[x] are the irreducible non-
constant polynomials, those that cannot be written as a product f = g ·h of polynomials
with degrees < deg(f). If f(x) has a root α in F then f cannot be irreducible because
we can long divide by (x − α) to get f(x) = (x − α)Q(x). If Q(x) also has α as a root
we may continue this process, arriving at a factorization f(x) = (x−α)mQ(x) such that
Q(x) does not have α as a root. If we can find other roots of Q(x) in F we can continue
peeling off linear factors, finally arriving at a factorization

f(x) =

r
∏

i=1

(x− αi)mi ·Q(x) with α1, . . . , αr in F

in which Q(x) has no roots at all in F. Unfortunately, by itself the absence of any roots
in the ground field is not enough to guarantee irreducibility of Q(x) in F[x], though
sometimes it does.

7.5.6 Exercise. For any field F and nonconstant polynomials f ∈ F[x] prove that:

(a) All linear polynomials (deg f = 1) are irreducible.

(b) A quadratic polynomial (deg f = 2) is irreducible ⇔ it has no roots in F.

(c) A cubic polynomial (deg f = 3) is irreducible ⇔ it has no roots in F.

Note: Things get more complicated when deg f ≥ 4. �

7.5.7 Exercise. Verify irreducibility, or lack thereof, in the following situations.

(a) f(x) = x4 + 1 is irreducible in R[x], hence also in Q[x], but is reducible in
C[x].

(b) f(x) = x3 − 5 is irreducible in Q[x], but is reducible in R[x].

(c) Is the polynomial f(x) = x3 + x + 1 irreducible in the ring Z5[x]? Is it
irreducible as an element of Z2[x]? �

7.5.8 Exercise. Prove that:
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(a) The polynomial f(x) = x3 + x2 + x + 1 is reducible in Q[x], hence also in
R[x].

(b) We can write f(x) = (x − r)·Q(x) where r ∈ R and Q(x) is an irreducible
quadratic polynomial in R[x].

(c) What is the unique irreducible factorization of f(x) over C?

Note: Part (b) yields the unique prime factorization of x3 + x2 + x+ 1 in the Euclidean
ring R[x]. The same prime factorization also holds in the ring Q[x]. �

The Fundamental Theorem of Algebra asserts that the complex number field is alge-
braically closed.

Fundamental Theorem of Algebra. Every nonconstant polynomial with
coefficients in C has at least one root in C.

None of the other fields Q,R,Zp, or the fields of rational functions F(x),F(x1, . . . , xn),
encountered so far have this property. In C[x] the process of peeling off one linear factor
(x−α) for each root in the ground field F terminates in a complete splitting of f(x) into
linear factors:

f(x) = c ·
r

∏

j=1

(x− zj)mj (m1 + . . .+mr = n = deg f)

where c is the coefficient of the leading term in f . In particular the monic irreducible
polynomials in C[x] all have the form (x − z) with z ∈ C, and the product above is the
prime factorization of f(x).

Interesting things happen when real-coefficient polynomials are regarded as complex
polynomials R[x] ⊆ C[x] that happen to have real coefficients.

7.5.9 Exercise. If f(x) is a nonconstant polynomial in R[x] some roots may be real and
others non-real complex z = x+ iy with y 6= 0. Prove that the non-real roots must occur
in conjugate pairs z, z where

z = x− iy is the complex conjugate of z = x+ iy

Hint: Use the real-coefficient property to show that f(z) = 0 ⇒ f(z) = 0. Recall that

z + w = z + w, z ·w = z · w, and (z)
−

. �

In particular the number of nonreal roots must be even.

7.5.10 Exercise. Use Exercise 7.5.9 and the Fundamental Theorem to prove that;

(a) A quadratic Ax2 +Bx+C in R[x] is irreducible ⇔ its discriminant is negative:
B2 − 4AC < 0.

(b) Every monic polynomial f ∈ R[x] is a product of irreducibles that have the form

• Linear factors: (x− r) with r ∈ R,

• Irreducible quadratic factors: x2 +Bx+ C with B,C ∈ R

and B2 − 4C < 0.

Hint: Write out (x − z)(x − z) for a nonreal complex number z = a + ib. Show that a
monic real polynomial x2 +Bx+C is irreducible⇔ it is equal to (x− z)(x− z) for some
nonreal complex number z. �
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7.6. Extension Fields and Adjunction of Roots.

An extension of a field F is any field E that contains F, for example R ⊇ Q and
C ⊇ R are field extensions. We will exploit the fact that an extension E ⊇ F becomes
a vector space over F if we only allow elements of E to be scaled by elements λ ∈ F.
The dimension dimF(E) of E as a vector space over the restricted field of scalars F could
be finite or infinite dimensional. For instance dimQ(R) = ∞ (Q-linear combinations of
a finite set x1, . . . , xn of real numbers yield a countable set, but R is uncountable), and
dimR(C) = 2 since every complex number can be written as z = x ·1 + y ·

√
−1, so the

complex numbers {1, i} are an R-basis when C is regarded as a vector space over R. The
dimension of E over F is often denoted by dimF(E) = [E : F], and the initial field F is
generally referred to as the ground field.

7.6.1 Exercise. Given a field extension E ⊇ F, explain why the identity element in F

must agree with that in the larger field: 1
F

= 1
E
. �

7.6.2 Exercise. The field E = Q[
√

2 ] = Q +
√

2 Q defined in Example 7.1.6 is an
extension of Q. Explain why dimQ(E) = 2. �

7.6.3 Exercise. If F ⊆ E ⊆ K are finite dimensional field extensions, prove that

(27) [K : F] = [K : E] · [E : F]

Hint: Let {e1, . . . , em} and {f1, . . . , fn} be bases for E over F and for K over E respec-
tively. Prove that the products {ei·fj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} in K are a basis for K over
F. �

7.6.4 Notation. Given an extension E ⊇ F and elements a1, . . . , ar in E there exist:

(i) A smallest subring F[a1, . . . , ar] ⊆ E that contains F and the elements ai. It
consists of all finite sums

∑

λ∈Zr
+

cλa
λ over multi-indices λ = (m1, . . . ,mr),

where cλ ∈ F and aλ = aλ1

1 ·. . .·aλr
r .

(ii) A smallest subfield F(a1, . . . , ar) ⊆ E containing F and the elements ai.
This extension of F consists of all quotients

(28)
f(a)

g(a)
=
f(a1, . . . , ar)

g(a1, . . . , ar)
(a = (a1, . . . , ar), ai ∈ F)

with f, g ∈ F[x1, . . . , xr] and g(a) 6= 0 in E.

7.6.5 Exercise. Writing h(a) = h(a1, . . . , ar), verify the description of the subfield
F(a1, . . . , ar) given in equation (28). In particular explain why sums

f1(a)

g1(a)
+ . . .+

fs(a)

gs(a)

have the desired form f(a)/g(a). �

Although elements in F(a1, . . . , ar) can be written as f(a)/g(a) with f, g in F[x1, . . . , xn]
and g(a) 6= 0, different polynomials f ′, g′ may yield the same outcome. In fact if h is any
polynomial in x1, . . . , xn with h(a) 6= 0 we can take f ′ = f ·h and g′ = g ·h.
Algebraic Elements in a Field Extension. An element a ∈ E in an extension
E ⊇ F is algebraic over F if h(a) = 0 for some nonconstant polynomial h ∈ F[x], and
is otherwise said to be transcendental over F. If the dimension [ E : F] is finite, every
a ∈ E is algebraic because only finitely many of the powers 1, a, a2, . . . can be linearly
independent over F. We say E is an algebraic extension of F if every element in E is
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algebraic over F. Every finite dimensional extension E ⊇ F is algebraic, but there are
algebraic extensions such that [ E : F] =∞.

When a ∈ E is algebraic over F there is a nonconstant polynomial h(x) ∈ F[x] of
lowest degree such that h(a) = 0 in E. If a ∈ F we may take h(x) = x − a; otherwise
deg h(x) ≥ 2. This minimal polynomial for a is unique if we require that it have
leading coefficient = 1. [ In fact, Ia = {h ∈ F[x] : h(a) = 0} is an ideal in F[x], hence
a principal ideal, and by 7.3.8 is generated by any nonzero f ∈ Ia of minimal degree.
The generator f is unique up to a multiplied unit u = c1-, c 6= 0 in F.] Since there
is a polynomial that kills a there is an n ∈ N such that the powers {1-, a, a2, . . . , an−1}
are linearly independent over F, while all higher powers lie in F-span{1-, a, . . . , an−1}. In
particular there is a linear dependence

(29) c0 + c1a+ c2a
2 + . . .+ cn−1a

n−1 + an = 0 in E (ck ∈ F)

and the monic minimal polynomial for a is h(x) = xn +
∑n

k=0 ckx
k.

7.6.6 Lemma. If λ is an algebraic element in a field extension E ⊇ F, its minimal
polynomial f(x) ∈ F[x] is always irreducible.

Proof: If not, we would have h(x) = f(x) · g(x) with f, g ∈ F[x] and deg(f), deg(g) are
both < n = deg(h). Since 0 = h(a) = f(a)·g(a) at least one of the factors is zero, say
f(a) = 0. Then f ∈ Ia, but deg(f) is lower than the minimum degree of elements in
Ia = (h). Contradiction. �

7.6.7 Exercise. Show that C ⊇ Q and R ⊇ Q cannot be algebraic extensions of Q by
exhibiting explicit elements that are not algebraic over Q. Explain why C is an algebraic
extension of R. �

7.6.8 Exercise. Explain why the fraction field E = Frac(F[x]) ⊇ F[x] ⊇ F is generated

as a field by the elements of F and the single element λ = [x1 ] in E, so E = F(λ) in the
notation set forth in 7.6.4. Explain why there cannot be a nontrivial polynomial relation

0 =

m
∑

i=0

ciλ
i in E

with m <∞, coefficients ci ∈ F, and cm 6= 0. �

Thus the generator λ ∈ E is transcendental over F and [E : F] = [ F(λ) : F] = ∞. By
abuse of notation the fraction field E is generally denoted F(x) instead of F(λ).

Adjoining New Roots of a Polynomial to the Ground Field. Let f(x) be a
nonconstant irreducible polynomial in F[x], let (f) = f(x) ·F[x] be the corresponding
principal ideal, and let E = F[x]/(f) be the quotient ring, which is a field by 7.5.4. We
first observe that in a natural sense E “contains” the original field F, and so can be
regarded as a field extension E ⊇ F.

The quotient map π : F[x]→ E is a surjective homomorphism that sends the identity
1- ∈ F[x] to the coset 1 = π(1-) = 1-+ (f) in the quotient ring; this is precisely the identity
element 1

E
in the quotient field. [ Obviously (1)2 = 1, and the multiplicative identity

in E is the only idempotent element in E×.] The maps c
j−→ c1-

π−→ c = c1- + (f) are
bijective unital ring isomorphisms

F
j−→ F̃ = F · 1- π−→ F = π(F · 1-)

that identify the ground field F with a subfield F contained in the quotient field E =
F[x]/(f); the identity elements match up too, with 1

F
→ 1-→ 1 = 1

E
.

In what follows we will abuse notation and regard F as an actual subfield F ⊆ E,
ignoring the distinctions between F, F̃ = F ·1-, and F. Once these identifications are made
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we may regard F[x] as a subring F[x] ⊆ E[x], with a common identity element 1-, just as
we may regard real coefficient polynomials h ∈ R[x] as complex polynomials h ∈ C[x]
that happen to have real coefficients. In particular, if h ∈ F[x] its roots in F are a subset
of its roots in E when we regard h as an element of E[x]. Additional roots often arise in
E when we make this shift in our point of view, as they did in Example 7.5.5.

7.6.9 Theorem. Let F be a field, f =
∑n

k=0 ckx
k a nonconstant irreducible polynomial

in F[x], and E = F[x]/(f) the quotient field with quotient map π : F[x] → E. Let
λ = π(x), the image in E of the polynomial h(x) = x. The element λ is a root in E of
f(x), which has no roots in the subfield F ⊆ E. Furthermore,

(i) Every element y ∈ E can be written uniquely as a linear combination

y = a0 + a1 ·λ+ . . .+ an−1 · λn−1

with n = deg(f) and coefficients ai ∈ F.

(ii) Viewing E as a vector space over F, [ E : F ] = dimF(E) is equal to the degree
n = deg(f).

The extension E is generated as a field by λ and the elements of F, so E = F(λ).

Proof: (i)⇒ (ii). Uniqueness of the expansion y =
∑n−1
i=0 aiλ

i means that 1, λ, . . . , λn−1

are a vector basis for E over the ground field F. Furthermore, λ = π(x) is a root of f(x)
in E because the quotient map π : F[x] → E is a homomorphism of rings that kills all
elements in the ideal I = (f) and π(c·1-) = c·1 for c ∈ F. Thus

f(λ) =

n−1
∑

k=0

ck ·(π(x))k =

n−1
∑

k=0

π(ck ·xk) = π(
n−1
∑

k=0

ck · xk) = π(f(x)) = 0 ,

proving (ii).
To prove (i) we may as well multiply f(x) by a unit to make it a monic polynomial

f(x) = xn + cn−1x
n−1 + . . .+ c0 with ck ∈ F, so that

(30) 0 = f(λ) = λn + cn−1λ
n−1 + . . .+ +c1λ+ c01- in E

Since the quotient map is surjective E consists of finite linear combinations of the powers
λk, but E is actually equal to M = F-span{1, λ, . . . , λn−1}. In fact, arguing recursively
from (30) we show that λn+k ∈ M for k = 0, 1, 2 . . .. When k = 0 this follows directly
from (30):

λn = −(cn−1λ
n−1 + . . .+ c1λ+ c0) ∈M

At the next step, π(f) = 0 implies π(x·f(x)) = 0, so that

0 = π(x·f(x)) = λ · (λn + cn−1λ
n−1 + . . .+ c0)

= λn+1 + cn−1λ
n + (terms in M)

Thus λn+1 ∈ −cn−1λ
n +M = M , and so on inductively.

The elements 1, λ, . . . , λn−1 are also independent, hence a basis for E over F. For if
there exist coefficients ak ∈ F such that 0 = an−1λ

n−1 + . . . + a0, then the polynomial
g(x) =

∑n−1
k=0 akx

k maps to 0 under the quotient map, hence g ∈ ker π = I = (f). But
by 7.3.8 deg(f) = n > n− 1 = deg(g) is the lowest degree of any nonzero element in this
principal ideal, so we get a contradiction unless g = 0 in F[x]. That proves independence,
so 1, λ, λ2, . . . , λn−1 is a basis and dimF(E) = n. �

7.6.10 Example. To illustrate, consider the polynomial f(x) = x2−2 in Z5[x]. It is easy
to check that f has no roots in F = Z5, so f(x) is irreducible over Z5 and the quotient
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ring E = Z5[x]/(x
2−2) is an extension of Z5 with dimension [ E : Z5] = deg(f) = 2. The

vectors {1, λ} = {1, π(x)} are a basis for E over Z5 so E = Z5 ·1 + Z5 ·λ and E is a finite
field with |E| = 5·5 = 25. This is not one of the familiar finite fields Zp (p a prime).

The relation 0 = π(x2 − 2) = λ2 − 2 can be used to compute products and sums of
elements in E.

(a+ b·λ) + (c+ d·λ) = (a+ c) + (b + d)·λ
(a+ b·λ) · (c+ d·λ) = (ac+ 2bd) + (ad+ bc)·λ

The multiplicative inverse of an element (a + bα) 6= 0 can be computed by clearing
denominators.

(a+ bλ)−1 =
1

a+ bλ
· a− bλ
a− bλ = ( a

a2 − 2b2
) + ( −b

a2 − 2b2
) · λ

The denominators a2− 2b2 are nonzero in Z5. This is clear if b = 0 and otherwise we get

a2 = 2b2 =⇒ (a
b
)

2
= 2 ,

which is impossible because there is no “
√

2” in Z5. But λ2 = 2 and E is generated by
λ and the elements of Z5, so E = Z5(λ). We can also write E = Z5(

√
2) to indicate that

we get E by adjoining a square root of 2 to Z5. �

7.6.11 Example. Revisiting Example 7.5.5 we show that E = R[x]/(x2+1) is isomorphic
to the field C = {a+ ib : a, b ∈ R} of complex numbers.

Discussion. The element λ = π(x) in the quotient field satisfies the relation

0 = π(x2 + 1) = λ2 + 1

so it serves as a “
√
−1” in that field; furthermore, [E : R] = deg(x2 +1) = 2 so {1, λ} is a

basis for E = R·1 + R·λ over R. Since C has {1, i} as an R-basis, we get an isomorphism
of vector spaces over R via the correspondence

φ : E→ C with φ(a+ bλ) = a+ bi for a, b ∈ R

It remains only to check that the (+) and (·) operations match up under the bijection
φ. This is clear for (+), and for (·) we have

φ((a+ bλ)·(c+ dλ)) = φ((ac+ λ2bd) + (ad+ bc)λ)

= φ((ac− bd) + (ad+ bc)λ) (since λ2 = −1)

= (ac− bd) + i(ad+ bc) = (a+ ib) · (c+ id)

= φ(a+ bλ) · φ(c+ dλ)

Done.
Note that φ sends elements of the ground field R ⊆ E to elements of the ground field

R = R + i0 ⊆ C, with φ(x + 0·λ) = (x + i0), and once these identifications are made φ
acts as the identity map between these subfields of E and C. �

7.6.12 Exercise. Prove that the quotient field E = Q[x]/(x2 − 2) ⊇ Q is isomorphic to
the field

K = Q +
√

2 Q = {a+ b
√

2 : a, b ∈ Q}
equipped with the algebraic operations (+), (·) defined in Example 7.1.6.
Note: Since E is generated by the elements of Q ⊆ E and the single element λ we have
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E = Q(λ) = Q(
√

2). If we identify the ground fields Q in E and K, the isomorphism
φ : E→ K becomes the identity map when restricted to Q. �

The following useful variant of Theorem 7.6.9 describes the field F(λ) generated by
an algebraic element in a field extension E ⊃ F.

7.6.13 Theorem. Let E ⊇ F be a field extension, let λ ∈ E be an algebraic element in
E, and let f ∈ F[x] be the minimal polynomial for λ. Then

(a) The minimal polynomial f(x) is irreducible in F[x], so by 7.5.4 the quotient ring
F[x]/(f) is a field.

(b) The subfield F(λ) generated by λ and F is isomorphic to the quotient field
F[x]/(f), so that dimF(E) = [ F(λ) : F] is equal to d = deg(f).

(c) The elements 1, λ, λ2, . . . , λd−1 are an F-basis for F(λ). Furthermore, the unital
subring generated by λ,

F[λ] =

{

m
∑

i=0

ciλ
i : ci ∈ F, m <∞

}

coincides with the subfield F(λ) in this situtation.

Proof: Let ǫλ : F[x] → E be the evaluation map, ǫλ(h) = h(λ) ∈ E for h ∈ F[x]. Its
kernel

I = ker(ǫλ) = {h ∈ F[x] : h(λ) = 0 in E}
is a principal ideal I = (f) for some f(x) ∈ F[x] such that f(λ) = 0. By 7.3.8 the
generator f has the minimum possible degree among nonzero elements in I, which means
it is the minimal polynomial for λ. Since f is irreducible the quotient ring F[x]/(f) is a
field, by 7.6.6.

The subring F[λ] ⊆ E generated by λ is the F-linear span of the powers λi, but because
λ is algebraic over F only finitely many powers 1, λ, . . . , λd−1 can be linearly independent
over F. Then λd and all higher powers are F-linear combinations of λi, i ≤ d− 1, so the
generated ring F[λ] is precisely the linear span of these powers. The (monic) minimal
polynomial for λ has the form f(x) = xd + cd−1x

d−1 + . . .+ c0.
We claim that the quotient field F[x]/(f) is isomorphic to the generated subfield

F(λ). Since I = (f) is equal to ker(ǫλ), the First Isomorphism Theorem 7.1.1 implies that
F[x]/(f) = F[x]/ ker(ǫλ) is isomorphic to the range ǫλ(F[x]) = F[λ] of the homomorphism
ǫλ : F[x]→ E,

(31) F[x]/(f) = F[x]/ ker(ǫλ) ∼= ǫλ(F[x]) = F[λ] ,

so F[λ] ∼= F[x]/(f).
Finally we observe that F(λ) = F[λ] as subsets of E, hence no quotients of elements

in F[λ] need be taken to obtain the generated subfield. In fact by (31) the subring F[λ] is
already a subfield of E that contains λ = ǫλ(x) so F[λ] ⊇ F(λ), while the reverse inclusion
is obvious. Hence F[λ] = F(λ), and our proof is complete. �

7.6.14 Exercise. If F ⊆ E and λ ∈ E show that λ is algebraic over F ⇔ there is a
subfield F ⊆ K ⊆ E that contains λ and is finite dimensional over F. �

7.6.15 Exercise. Show that there is no
√
−1 in Z7. Then

(a) In the manner of Example 7.6.11, decribe the multiplication law in E =
Z7(λ) = Z7(

√
−1), with adjoined element such that λ2 = −1.

(b) Decide whether the element 3 = 3 + λ·0 ∈ E has a square root in E, and list
all such square roots if any exist. �
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F[x]
φ−→ A ⊆ K1 = F(α1)

π↓ ր
F(λ) = F[x]/(f) = E

φ̃

Figure 7.4. The maps in the proof of 7.7.1, with λ = π(x). By definition, f(α1) = 0.

7.6.16 Exercise. Using the result of Exercise 7.6.15, prove that the generator λ =
√
−1

in E = Z7(λ) does not itself have a square root µ =
√
λ in E. �.

7.7 Splitting Fields for Polynomials in F[x].
Returning to our study of root adjunctions, if a polynomial f ∈ F[x] is irreducible it has
no roots in F. But the quotient construction yields a field extension E = F[x]/(f) ⊇ F

containing a root λ = π(x) such that E = F(λ). A natural question arises: f(x) might
have several roots in this extension, say λ = α1, α2, . . . , αs. By definition E = F(λ);
what would happen if we adjoined to F some other root αi ∈ E of f(x)? How are the
generated subfields F(αi) ⊆ E related?

7.7.1 Theorem. Let f ∈ F[x] be a nonconstant irreducible polynomial and for i = 1, 2
let Ki = F(αi) ⊇ F be extension fields generated by F and a single new element αi that
is a root of f in Ki, when we regard f as an element in Ki[x] ⊇ F[x]. Then there is a
unique isomorphism of fields φ : K1 → K2 such that

(i) φ|F = idF and (ii) φ(α1) = φ(α2)

(see Figure 7.4).

In 7.7.1 we do not assume the extensions Ki lie within some common larger field K.
The following variant resolves the question “Which root got adjoined in forming E =
F[x]/(f)?”

7.7.2 Corollary. If f ∈ F[x] is a nonconstant irreducible polynomial, E = F[x]/(f), and
α any root of f in E, then E = F(α).

To prove the corollary just compare dimensions [E : F] and [F(α) : F] with 7.7.1 in mind.

Proof (7.7.1): It suffices to show there is an isomorphism φ̃ : F[x]/(f)→ K1 such that
φ̃|F = idF and φ̃(π(x)) = α1, where π is the quotient map F[x]→ F[x]/(f).

The range of the substitution map φ : F[x]→ K1 such that

φ(x) = α1 and φ(h(x)) = h(α1) ∈ K1

is a subring A ⊆ K1. Then ker(φ) = {h ∈ F[x] : h(α1) = 0} while ker(π) = (f). Since
f(α1) = 0 by definition we have ker(π) ⊆ ker(φ); but in fact the kernels coincide because
f is irreducible over F, ker(π) = (f) is a maximal ideal by 7.5.3, and ker(φ) is not all of
F[x].

By the First Isomorphism Theorem there is a one-to-one homomorphism of rings φ̃
from F[x]/(f) onto A such that φ = φ̃ ◦ π, and since the quotient is a field so is its
isomorphic image A, see Figure 7.4. Furthermore, if λ = π(x) in the quotient we have

φ̃(λ) = φ̃ ◦ π(x) = φ(x) = α1 and φ̃|F = idF

when we make the natural identification F ⊆ K1. By hypothesis K1 = F(α1) so A = K1,
and φ̃ : F[x]/(f)→ K1 is the desired isomorphism of fields.
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The same discussion applies to α2 and K2. Uniqueness of the induced map ψ =
φ̃2 ◦ φ̃−1

1 from K1 to K2 follows from properties (i) and (ii) because a homomorphism is
determined by its action on generators. �

Repeated adjunction of roots to the various irreducible factors of an arbitrary non-
constant polynomial f ∈ F[x] yields an extension field big enough to include all possible
roots of f(x).

7.7.3 Definition. If f is a nonconstant polynomial in F[x], a splitting field for f is
any extension E ⊇ F such that

(i) f(x) splits as a product c ·∏r
i=1(x − αi)mi of linear factors in E[x], with

αi 6= αj if i 6= j and
∑r

i=1mi = deg(f).

(ii) E is generated by F and the distinct roots of f in E, so E = F(α1, . . . , αr).

7.7.4 Example. If F = Q and f ∈ Q[x] is a nonconstant polynomial, we may regard
Q ⊆ C and obtain a splitting field by taking the distinct roots α1, . . . , αr of f in C,
letting E = F(α1, . . . , αr) be the subfield of C generated by these roots. �

7.7.5 Exercise. Show that F(a1, a2) = [F(a1)](a2) if F ⊆ K and a1, a2 ∈ K. �

7.7.6 Theorem (Existence of a Splitting Field). Let F be a field and f ∈ F[x] a
nonconstant polynomial. Then a splitting field E ⊇ F exists and its dimension [E : F] is
finite.

Proof: We argue by induction on n = deg(f), the result being trivial taking E = F if
n = 1. So, assume the result holds for all F and polynomials of degree ≤ n− 1. If there
is a root α in F then f = (x − α)·g(x) where g ∈ F[x] has lower degree, and a splitting
field for g(x) is obviously a splitting field for f(x).

In the remaining case f(x) has no roots in F. Writing f as a product of irreducible
polynomials

∏m

i=1 fi, let K1 = F[x]/(f1) ⊇ F. Then f1(x) has at least one root α1 = π(x)
in K1 ∼ F and [K1 : F] = deg(f1). If α1, . . . , αr are the distinct roots of f1(x) in K1 we
have K1 = F(α1, . . . , αr) and

f1(x) =
r

∏

i=1

(x− αi)mi · g(x) in K1[x]

where g(x) ∈ K1[x] has no roots in K1. If h(x) =
∏m

j=2 fj(x) and G(x) = g(x)h(x) we
get a factorization of f(x)

f(x) =

r
∏

i=1

(x − αi)mi ·G(x) in K1[x], with deg G < n

By the induction hypothesis there is a splitting field E ⊇ K1 for G(x). If β1, . . . , βℓ are
the distinct roots of G in E then E = K1(β1, . . . , βℓ) and f(x) is a product of linear
factors (x−αi), (x−βj) in E[x]. By 7.7.5 we conclude that E = F(α1, . . . , αr, β1, . . . , βℓ)
so E is a splitting field for f(x). �

By 7.3.6 we also see that [E : F] = [E : K1] · [K1 : F] = [E : K1] · deg(f1).

Splitting Fields and the Galois Group Gal(E/F). By adjoining to F one root λ of an
irreducible polynomial in F[x] we obtained an essentially unique field extension E = F(λ),
as in Theorem 7.7.1. A similar result holds for the splitting field Ef of any nonconstant
polynomial, but the sense in which E is unique is not completely straightforward, and
the uniqueness proof has more moving parts than that of 7.7.1. We defer this discussion
until the next Chapter, concluding this chapter with a precise description of what is
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meant by “uniqueness of the splitting field” – which involves more than existence of a
field automorphism between any two splitting fields of f ∈ F[x]. We also indicate where
all this discussion is headed.

7.7.7 Theorem (Uniqueness of Splitting Fields). Let F be a field and f ∈ F[x] a
nonconstant polynomial. If E1 and E2 are two splitting fields containing F, so that

(i) f(x) splits into linear factors in Ei[x] for i = 1, 2 . . .

(ii) Ei = F(α(i)
1 , . . . , α

(i)
mi) where the α

(i)
k are the distinct roots of f(x) in Ei

then m1 = m2 and there is a unique field isomorphism φ : E1 → E2 such that

(32) φ|F = idF and φ(α(1)
k ) = α

(2)
k for all k

The whole point is to prove existence of the desired isomorphism φ in (32); uniqueness

follows immediately because each Ki is generated by F and the roots α
(i)
k . Note bthat we

obtain s different isomorphism φ if we list the roots {α(2)
1 , . . . , α

(m)
1 } in a different order,

and likewise for the roots {α(1)
i }.

Observe that if E is a particular splitting field for f ∈ F[x] and ∆f is the set of distinct
roots in E, the property φ|F = idF for an automorphism φ ∈ Aut(E) already implies that
φ permutes the roots in ∆f .

7.7.8 Lemma. Let E ⊇ F be any splitting field for a nonconstant polynomial f ∈ F[x].
If φ ∈ Aut(E) fixes all points in the ground field, so φ|F = idF, then φ(∆f ) = ∆f .

Proof: If f =
∑

i cix
i ∈ F[x] and f(α) = 0 for some α ∈ E, then

f(φ(x)) =
∑

i

ci(φ(α))
i
=

∑

i

φ(ci)φ(αi) = φ(
∑

i

ciα
i) = φ(f(α)) = 0

in E so φ(∆f ) ⊆ ∆f , and vice-versa for φ−1. �

Once we know the splitting field E of a polynomial f ∈ F[x] is essentially unique,
our attention is directed to a certain group of automorphisms associated with f(x), the
Galois group

(33) Gf = Gal(E/F) = {φ ∈ Aut(E) : φ|F = idF }

This is obviously a subgroup of Aut(E) under composition of mappings. Lemma 7.7.8
shows that each φ ∈ Gf permutes the set of roots ∆f ⊆ E, and is completely determined
by its action on those roots since E = F(α1, . . . , αr). [Some roots may lie within F since
we are not assuming f(x) is irreducible; φ(α) = α for those roots.] Therefore we obtain
a natural one-to-one embedding

(34) Ψ : Gal(E/F)→ Per(∆f ) =

(

all permutations on
the set of roots ∆f

)

One consquence is the fact that all Galois groups are finite since |Gf | ≤ m! where
m = |∆f | ≤ deg f .

Not every permutation of points in ∆f arises in this manner: certain clusters of
roots may in fact be invariant under all Galois automorphisms, for instance the roots in
∆f ∩ F. To put it another way, a permutation σ of the roots is the restriction of some
φ ∈ Gal(E/F) if and only if the map σ : ∆f → ∆f extends to an automorphism of E

that fixes all points in F.
Other important properties of the “Galois correspondence” (34) are less apparent and

will be discussed in the next chapter. These include
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• If E′,E are splitting fields for a nonconstant polynomial f ∈ F[x] there is a natural
group isomorphism Gal(E′/F) ∼= Gal(E/F)

Although Gal(E′/F) and Gal(E/F) are not the same object, all such Galois groups at-
tached to a polynomial f(x) ∈ F[x] are isomorphic as groups, and in this sense do not
depend on the particular splitting field used to construct them.

• If ∆f = {α1, . . . , αr} are the distinct roots in a splitting fiels E ⊇ F of some
polynomial f ∈ F[x], identifying those permutations of ∆f that correspond to
elements of Gal(E/F) can be a challenge.

We will gradually develop the tools needed for systematic calculation of Galois groups.
The Galois group turns out to be the key for deciding when a polynomial f ∈ F[x]

can be “solved by radicals” – that is, its roots can be produced by a finite succession of
operations involving only

sums, products, quotients, and radicals k
√· · ·

of numbers constructed in previous steps, starting from the field Q of rational numbers at
the first step. We defer a full discussion of “Galois theory,” and for the moment merely
note that solvability of the Galois group Gal(E/Q), in the sense of commutator subgroups
(see Section 6.4), is directly related to the issue of solvability by radicals.

Theorem (Galois). A nonconstant polynomial f ∈ Q[x] is solvable by
radicals if and only if the Galois group Gal(E/Q) associated with a splitting
field Ef is a solvable group in the sense of Definition 6.4.5.

We close this chapter by noting that

Theorem. Every nonconstant polynomial f ∈ Q[x] of degree deg f ≤ 4 is
solvable by radicals.

For deg f = 2 we have the quadratic formula: if a 6= 0 then

f = ax2 + bx+ c = 0 ⇒ roots =
−b±

√
b2 − 4ac

2a

For deg f = 3 there is a finite algorithm that includes “if . . . then . . . , else . . .”
branching statements, and similarly if deg f = 4. But if deg f ≥ 5 there are polynomials
over Q that cannot be solved by radicals. This is a consequence of the fact that the
permutation group S5 = Per{1, 2, . . . , 5} is not a solvable group. Once you recall the
definition of “solvable group” this follows easily from the fact that the only proper normal
subgroup of S5 is the group of even permutations A5, which is a simple group whose
commutator subgroup is [A5, A5] = A5 – see Examples 5.6.8-5.6.9 and 6.4.14.
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